April 29, 2020

JC GEOTECHNIC

Proposed Greenwich Seniors Living

GEOTECHNICAL INVESTIGATION REPORT

2 Greenwich Road, Greenwich, NSW

JC GEOTECHNICS PTY LTD Shop 2-4, 143-147 Parramatta Road, Concord, NSW 2137

Document Control Record

Document Prepared by:

JC Geotechnical Pty Ltd

Shop 2, 143 – 147 Parramatta Road, Concord, NSW 2137 T 02 8066 0665 E <u>admin@jcgeotechnics.com.au</u> W <u>www.jcgeotechnics.com.au</u>

Docu	ument Control		JC Geotechnics Pty Ltd						
Repor	rt Title	Geotechnical Report							
Docur	ment ID	GR1102.1J							
Client	t	Alceon Group Pty Ltd	Client Contact		Louise Campling				
Rev	Date	Revision Details/Status	Prepared Author		Approver				
	21 April 2020	Draft Issue	RT	RT					
00	29 April 2020	Final Issue	RT	RT	JC				
Curre	ent Revision	00							

Approval			
Author Signature		Approver Signature	Chip
Name	Robert Tu	Name	Joseph Chaghouri
Title	Geotechnical Engineer	Title	Principal Geotechnical Engineer

TABLE OF CONTENTS

1.	1. INTRODUCTION
2.	AVAILABLE INFORMATION 4
3.	SCOPE OF WORK
4.	SITE DESCRIPTION
5.	INVESTIGATION RESULTS
5.1	Geology
5.2	Subsurface Conditions
5.3	Groundwater
5.4	Laboratory Testing
6.	COMMENTS AND RECOMMENDATIONS
6.1	Dilapidation Reports
6.2	Basement Excavation
6.3	Hydrogeological Considerations10
6.4	Basement Excavation Support11
	6.4.1 Retention System11
	6.4.2 Design Parameters
6.5	Foundation Design
7.	LIMITATIONS

APPENDICES

APPENDIX A	About Your Report
APPENDIX B	Borehole Location Plan
APPENDIX C	Engineering Borehole Logs (BH1 to BH4 inclusive) with Core Photographs
APPENDIX D	Groundwater Monitoring Plots
APPENDIX E	Laboratory Test Results
APPENDIX F	Explanatory Notes

1. INTRODUCTION

JC Geotechnics Pty Ltd (JCG) has been commissioned by **Alceon Group Pty Ltd** to carry out a geotechnical investigation at 2 Greenwich Road, Greenwich, NSW. The site investigation was carried out over a period of five (5) working days between 19th March 2020 and 1st April 2020 and was completed in accordance with our Proposal Ref. GP2020-147 Rev.3 Greenwich, dated 13th March 2020.

The purpose of the investigation was to assess the subsurface conditions at four (4) borehole locations, to assist with the planning and design of the proposed development.

This report presents the results of the geotechnical investigation, interpretation, and assessment of the site's existing geotechnical conditions, as a basis to provide the following recommendations:

- Detailed logs of the boreholes and groundwater observations;
- Interpretation of subsurface profile;
- Dilapidation
- Basement Excavation
- Hydrogeological Consideration
- Basement Excavation Support
- Foundation Design

To assist in reading the report, reference should be made to "About Your Report" attached in Appendix A.

2. AVAILABLE INFORMATION

Prior to preparation of this report, the following information was made available to JC Geotechnics:

- Survey Plan Titled 'Survey,' prepared by Veris Australia Pty Ltd, Ref No. 202046, Issue 1, dated 18 February 2020.
- Architectural Drawings Titled 'Basement 3,' prepared by Marchese Partners International Pty Ltd, Job No. 19118, Drawing No. DA2.01, Revision B, dated 20 April 2020.
- Architectural Drawings Titled 'Basement 2,' prepared by Marchese Partners International Pty Ltd, Job No. 19118, Drawing No. DA2.02, Revision B, dated 20 April 2020.
- Architectural Drawings Titled 'Basement 1,' prepared by Marchese Partners International Pty Ltd, Job No. 19118, Drawing No. DA2.03, Revision B, dated 20 April 2020.
- Architectural Drawings Titled 'Section 1,' prepared by Marchese Partners International Pty Ltd, Job No. 19118, Drawing No. DA4.01, Revision B, dated 20 April 2020.

- Architectural Drawings Titled 'Section 2,' prepared by Marchese Partners International Pty Ltd, Job No. 19118, Drawing No. DA4.02, Revision B, dated 20 April 2020.
- Architectural Drawings Titled 'Access Ramp Sections,' prepared by Marchese Partners International Pty Ltd, Job No. 19118, Drawing No. DA4.03, Revision B, dated 20 April 2020.

Based on the information provided, we understand that the proposed development comprises demolition of the existing buildings and construction of an eight-storey building over three levels of basement car parking. The ground floor will be used for commercial purposes while the seven remaining levels will be used for residential purposes. The lowest basement is proposed to be constructed at RL73.20m. In order to achieve the proposed bulk excavation level, excavation to depth of at least 13.5m is expected as part of the works.

3. SCOPE OF WORK

The fieldwork for the geotechnical site investigation was carried out by an experienced Geotechnical Engineer from JCG broadly following the guidelines provided in Australian Standard AS 1726-2017 (Reference 1).

A site walk-over inspection was carried out by a Geotechnical Engineer in order to determine the overall surface conditions and to identify relevant site features.

Prior to commencement of the fieldwork, the proposed borehole locations were electromagnetically scanned by a specialist subcontractor with reference to Dial Before You Dig (DBYD) plans.

Safe work measures and procedures were implemented during the course of the fieldwork.

Auger drilling of four (4) boreholes to a depth of 6.3m (or RL of about 79.7mAHD) in BH1, 9.02m (or RL of about 72.78mAHD) in BH2, 6.0m (or RL of about 77.2mAHD) in BH3, and 0.51m (or RL of about 76.19mAHD) in BH4, below existing ground surface levels using a Tungsten Carbide 'TC' bit attached to the augers.

Standard Penetration Test (SPT) were carried out, where possible, in the augered section of the boreholes to assess the fill compaction and strength/relative density of the soils. Hand Penetrometer tests were also carried out, where possible, on the recovered SPT samples.

The four (4) boreholes were continued to depths of 17.4m (or RL of about 68.64m) in BH1, 14.2m (or RL of about 67.62m) in BH2, 16.7m (or RL of about 66.55m) in BH3 and 7.92m (or RL of about 68.87m) in BH4.

Groundwater levels were measured in the boreholes during and soon after completion of auger drilling. The use of water for coring precluded further measurements of groundwater levels.

On completion of coring, three (3) Class 18 PVC standpipes GW1, GW2 and GW3 were installed in BH1, BH2 and BH3 respectively to allow for further measurements of the groundwater levels. Each borehole was capped with a gatic cover at the surface.

Groundwater monitoring was undertaken using data loggers installed in GW1, GW2 and GW3. The data loggers were installed to record the groundwater readings for the three following months. The data obtained from the data loggers were downloaded by JCG once every month.

Laboratory testing of selected soil samples for one (1) Atterberg Limits/Linear Shrinkage tests, four (4) Moisture Content tests, four (4) Aggressivity Suits and thirty-six (36) point load strength index testing on selected rock core samples recovered from the boreholes.

The approximate locations of the four boreholes are shown on "Figure 1 – Borehole Location Plan" attached in Appendix B. The levels on the borehole logs were interpolated between spot levels shown on the survey plans referenced above.

A geotechnical engineer from JC Geotechnics was present full-time on site to set out the test locations, log the encountered subsurface profile and nominate in-situ testing and sampling, measure the groundwater levels and install the monitoring wells and data loggers. The borehole logs, together with explanatory notes used are attached in Appendix C and Appendix F, respectively.

4. SITE DESCRIPTION

The site is located mid-slope of a south facing hillslope. The subject site slopes down from North to South and West to East at an angle of about 5° to 6° .

At the time of our investigation, the site has been constructed into the hillslope and consisted of two properties, No. 2 Greenwich Road and No. 3 Anglo Road, Greenwich.

The site is approximately rectangular in shape with a total area of approximately 2140m². The site is bounded by Greenwich Road to the West, a multi-storey commercial building with at least one level of basement to the North, residential buildings to the South and East.

The site at 2 Greenwich Road was occupied by the existing Northside Clinic. The multi-storey concrete clinic overlaid two levels of basement carpark. An existing stairway provided access to the reception and café area of the clinic located at the front of the property. Another stairway provided access to the ground floor outdoor area of the clinic on the southern boundary of the site. The building appeared to be in good external condition with minor cracking observed. However, during our time onsite, we were advised by the facility manager 'Mr. Greg Nilsson' of the clinic, that the building is in a poor condition with cracking and leakage in the clinic interior.

An existing concrete driveway was located along the northern boundary and was shared between the subject site and the property to the North. A steep slope of about 14° was measured as the driveway descended into the basement. A concrete retaining wall of approximately 2.5m high was located north of the driveway. Trees and plants were observed above the retaining wall. The retaining wall was observed to be in good condition. The paved driveway and the retaining wall appeared to be in a good condition towards the entrance, however, as the driveway sloped towards the basement car park, moderate cracking on the surface was observed. Another concrete retaining wall was observed south of the Clinic Café of approximately 6.2m high. An overgrown garden was situated on top of the retaining wall. The retaining wall was observed to be in good condition.

Two levels of basement car park spaces were present below Northside Clinic. Each floor had a relatively low clearance of 2.1m with concrete pavement and cemented pillars for support. A slope was present on the first basement floor to allow cars to travel to the lower basement. A range of different pipelines were observed on the roof of each basement floor to allow for

sewage circulation. The basement does not appear to extend all the way to the site boundary. The concrete pavement and cemented pillars inside the basement appear to be in good condition with little to no cracking observed.

Access to the rear of Northside Clinic (Eastern boundary) was gained through a concrete driveway at the residential property located at 3 Anglo Street, Greenwich. The concrete paved driveway appeared to in poor condition with multiple cracks. An existing two-storey timber residential dwelling was observed siting at an elevated level at the property. The property appeared to be in an extremely poor condition with cracked tiles and broken timber rails throughout. The driveway led to the backyard of the residential property which connected the Eastern end of Northside Clinic. No barriers or fencing separated the residential property from Northside Clinic. A small stairway led to a brick tiled area for the Northside Clinic. The brick tiled area appeared to be in good condition with little to no cracking. Staircases with aluminium guard rails was observed descending from the brick tiled area into the ground floor of Northside Clinic. Another retaining wall of approximately 6.2m high was observed north of the descending staircase. The retaining wall appeared to be in good condition and connected with the previous retaining wall located adjacent to the Clinic driveway.

5. INVESTIGATION RESULTS

5.1 Geology

Reference to the Sydney 1:100,000 Geological Series Sheet 9130 Edition 1, dated 1983, by the Geological Survey of New South Wales, Department of Mineral Resources, indicates the site is located within the geological boundary known as Ashfield Shale (Rwa) of the Wianamatta Group of Middle Triassic age. Ashfield Shale is described as "Black to dark-grey shale and laminite."

It should be noted that the published geological profile does not take into account the residual soils derived from in-situ weathering of the bedrock or the presence of fill that may have been generated from previous earthworks.

5.2 Subsurface Conditions

The subsurface conditions encountered within the boreholes are summarised below:

Pavement

Asphaltic concrete was observed in BH1, BH2 and BH4 with thickness measured ranging to be from 210mm to 450mm. Brick pavement was observed in BH3 with 40mm thickness.

Fill

Fill material was encountered in the boreholes, BH1, BH2, and BH3 with depths ranging from 0.3m (or RL of about 82.9mAHD) in BH3 to 5.5m (or RL of about 80.5mAHD) in BH1. The fill material was comprised of Silty Clay of low to medium plasticity with various organic contents such as roots and root fibres. The deep fill material from BH1 may be associated with the construction of the Clinic driveway. No fill material was encountered in BH4.

Residual

7

Residual soil was encountered below the fill material in BH2, BH3 and below the concrete slab in BH4. The residual soil was comprised of Silty Clay and extended between 0.5m (or RL of about 76.2mAHD) in BH4 to 9.02m (or RL of about 72.78mAHD) in BH2. The silty clay was generally of low to medium plasticity and firm to stiff strength.

Bedrock

Weathered shale bedrock was encountered in all boreholes at depths ranging from 0.5m (or RL of about 76.2mAHD) in BH4 to 9.02m (or RL of about 72.78mAHD) in BH2. Generally, on first contact the shale was extremely weathered to distinctly weathered and of extremely low to very low strength. This upper band of extremely low to very low strength rock was then underlain by shale of low strength. The augered boreholes were terminated within these upper shale layers.

Within the cored boreholes (BH1 to BH4) slightly weathered and fresh shale of medium to high strength was encountered at depths ranging from 3.5m (or RL of about 73.2mAHD) in BH4 to 12.3m (or RL of about 73.7mAHD) in BH1. The cored shale initially contained significant defects including frequent poorly cemented laminae, extremely weathered sections, clay seams, bedding partings and a number of steeply inclined joints. The shale improved with depth encountering only a few minor defects within the slightly weathered and fresh rock.

5.3 Groundwater

Groundwater seepage was not encountered in any of the boreholes during and following the completion of auger drilling. Water flush during the coring process precluded any further measurement of groundwater levels.

Piezometers installed during the fieldwork were measured on the 26th, 31st March, 1st and 7th April 2020. In addition, groundwater monitoring was carried out within three of the groundwater wells (GW1, GW2 and GW3) using data loggers carried out over three weeks between 7th April 2020 and 29th April 2020.

Groundwater levels recorded during the five site visits are presented in Table 1 below.

GW Well No.	Date	Approximate Depth of GW Below Existing Surface Level (m)	Reduced Level (mAHD)
	26/03/2020	7.20	78.80
	31/03/2020	7.20	78.80
GW1	01/04/2020	7.30	78.70
	07/04/2020	6.10	79.90
	29/04/2020	7.00	79.00

Table 1: Groundwater Measurements and Design Groundwater Levels

	26/03/2020	Not Yet Drilled	Not Yet Drilled		
	31/03/2020	4.40	77.40		
GW2	01/04/2020	4.30	77.50		
	07/04/2020	4.10	77.70		
	29/04/2020	4.10	77.70		
	26/03/2020	7.30	75.90		
	31/03/2020	7.40	75.80		
GW3	01/04/2020	7.10	76.10		
	07/04/2020	6.70	76.50		
	29/04/2020	6.70	76.50		

Note that groundwater levels may be subject to seasonal and daily fluctuations influenced by factors such as rainfall and future development of the surrounding properties.

5.4 Laboratory Testing

The Atterberg Limits test result confirmed the sample tested was of high plasticity with an expected moderate potential for shrink-swell reactivity with changes in moisture content.

The results of the moisture content tests carried out on recovered rock cutting samples correlate well with our field assessment of bedrock strength.

The point load strength index test results on selected samples of the bedrock showed reasonably good correlation with our field assessment of rock strength. The estimated Uncoffined Compressive Strength (UCS) of the rock roe ranged from 1 MPa to 40 MPa.

The soil pH test results were 9.0 (BH1), 5.6 (BH3) and 5.5 (BH4). The sulfate contents were 380mg/kg (BH1), 280mg/kg (BH3) and 290mg/kg (BH4), the chloride contents were 150mg/kg (BH1), 60mg/kg (BH3) and <10mg/kg (BH4) and the electrical conductivity values were 463μ S/cm (BH1), 119 μ S/cm (BH3) and 69 μ S/cm (BH4).

6. COMMENTS AND RECOMMENDATIONS

6.1 Dilapidation Reports

Prior to excavation and construction, we recommend that detailed dilapidation surveys be carried out on all structures, buried services and infrastructures surrounding the site that falls within the zone of influence of the excavation. The zone of influence of the excavation is defined by a distance back from the excavation perimeter of twice the total depth of the excavation. The report would provide a record of existing conditions prior to commencement of the work. A copy of each report should be provided to the adjoining property owner who

should be asked to confirm that it represents a fair assessment of existing conditions. The reports should be carefully reviewed prior to demolition and construction.

6.2 Basement Excavation

Prior to any excavation commencing, we recommend that reference be made to the WorkCover Excavation Work Code of Practice – July 2015.

Based on the borehole log, the proposed basement excavations will therefore extend through fill, residual clay and for the most part shale bedrock. An engineered retention system must be installed for at least the soil and shale of less than low strength prior to excavation commencing.

The soil and shale of less than low strength could be excavated using buckets of conventional earthmoving Hydraulic Excavators, particularly if fitted with 'Tiger Teeth' with some ripping.

Ripping of low strength shale or better bedrock, is expected to be encountered towards the base of the excavation and will present hard ripping or "hard rock" excavation conditions and therefore excavation productivity will be slow and higher than normal 'wear and tear' of excavation attachments is to be expected. The presence of defects will help facilitate excavation, but only marginal. Therefore, ripping would require a high capacity and heavy bulldozer of at least D9 or similar. The use of a smaller size bulldozer will result in lower productivity, and this should be allowed for. Perimeter and Grid sawing techniques with ripping will also facilitate the excavation and assist in reducing vibration emissions.

Should rock hammers be used for this site, vibration monitoring must be used and further advice must be sought from the geotechnical engineer.

Groundwater seepage monitoring should be carried out during bulk excavation prior to finalising the design of a pump out facility. Outlets into the stormwater system will require Council approval.

Furthermore, any existing buried services which run below the site will require diversion prior to the commencement of excavation or alternatively be temporarily supported during excavation, subject to permission or other instructions from the relevant service authorities. Enquiries should also be made for further information and details, such as invert levels, on the buried services.

6.3 Hydrogeological Considerations

Groundwater was not encountered in any of the boreholes during auger drilling. Groundwater levels were measured in five (5) separate occasions within the previously installed groundwater wells, the result of which are shown in **Table 1** above. In addition, data loggers were installed in GW1, GW2 and GW3 on the 7th April 2020 to measure and record the groundwater levels within the monitoring wells. JCG visited the above site on 29th April 2020 to download the recorded data. The highest recorded groundwater levels over the duration of three weeks were 7.1m (or RL of about 78.9mAHD) in GW1, 4.14m (or RL of about 77.66mAHD) in GW2 and 6.85m (or RL of about 76.35mAHD) in GW3. A detailed record of the groundwater monitoring plots from the data loggers can be found in Appendix D attached at the end of the report.

Experience shows that due to the expected low permeability of the soil and bedrock profile, groundwater inflows into the excavation should not have an adverse impact on the neighbouring sites. We expect groundwater inflows into the excavation along the soil/rock interface and through any defects within the bedrock (such as jointing, and bending planes, etc.) particularly following a period of heavy rain. The initial flows into the excavation may be locally high but would be expected to decrease with time as the bedding seams/joints are drained. We recommend that monitoring of seepage be implemented during the excavation works to confirm the capacity of the drainage system.

We expect that any seepage that does occur should be able to be controlled by a conventional sump and pump system. We recommend that a sump-and-pump system be used both during construction and for permanent groundwater control below the basement floor slab.

In the long term, drainage should be provided behind all basement retaining walls, around the perimeter of the basement and below the basement slab. The completed excavation should be inspected by the hydraulic engineer to confirm that adequate drainage has been allowed for. Drainage should be connected to the sump- and-pump system and discharging into the stormwater system. The permanent groundwater control system should take into account any possible soluble substances in the groundwater which may dictate whether or not groundwater can be pumped into the stormwater system.

We recommend that pump-out tests be undertaken together with seepage analysis to estimate the predicted groundwater seepage volumes into the excavation.

The design of drainage and pump systems should take the above issues into account along with careful ongoing inspections and maintenance programs.

6.4 Basement Excavation Support

6.4.1 Retention System

From a geotechnical perspective, it is critical to maintain the stability of the adjacent structures, infrastructures and buried services during demolition, excavation and construction works.

Based on the provided architectural plans, the basement is proposed to have setback of 1.0m, 3.0m, 5.0m and 0m to the Northern, Southern, Western and Eastern boundaries respectively.

Where space permits, temporary batters of no steeper than 1 Vertical (V) : 1 Horizontal (H) may be used provided that all surcharge loads are setback a distance H equal to height of the batter from the crest of the batter.

Unsupported vertical cuts of the soil and weathered rock profile are not recommended for this site as these carry the risk of potential slump failure especially after a period of wet weather. Slumping of the material may result in injury to personnel and/or damage to nearby structures/infrastructures and equipment.

A suitable retention system will be required for the support of the excavation. An anchored and/or propped soldier pile wall with concrete infill panels is recommended for this site. Anchors/props and shotcrete must be installed progressively as excavation proceeds. The use of a more rigid system (such as a contiguous or semi-contiguous pile wall) is recommended adjacent to neighbouring buildings/infrastructures, to reduce the lateral movements and the risk

of potential damage. We assume that permanent support of the retention system will be provided by bracing from the proposed structure.

Bored piers may be used for this site. However, relatively large capacity piling rigs (e.g. Soilmec SR-40 or larger) with rock augers and coring buckets will be required for drilling through the shale bedrock. The proposed pile locations should take into account the presence of any buried walls, footings, neighbouring anchors and/or the presence of buried services. Further advice should be sought from prospective piling contractor who should be provided with a copy of this report. Working platforms may also be required.

6.4.2 Design Parameters

The following parameters may be used for static design of temporary and permanent retaining walls at the subject site:

For progressively anchored or propped walls where minor movements can be tolerated (provided there are no buried movement sensitive services), we recommend the use of a trapezoidal earth pressure distribution of 5HkPa for soil and shale of less than low strength, where H is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system, tapering to nil at top and bottom;

For progressively anchored or propped walls which support areas which are highly sensitive to movement (such as areas where movement sensitive structures or infrastructures or buried services are located in close proximity), we recommend the use of a trapezoidal earth pressure distribution of 8HkPa for soil and shale of less than low strength, where 'H' is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system, tapering to nil at top and bottom;

All surcharge loading affecting the walls (including from construction equipment, construction loads, adjacent high-level footings, etc.) should be adopted in the retaining wall design as an additional surcharge using an 'at rest' earth pressure coefficient, k_0 , of 0.55;

The retaining walls should be designed as drained and measures are to be taken to provide complete and permanent drainage behind the walls. Strip drains protected with a non-woven geotextile fabric should be used behind the shotcrete infill panels for soldier pile walls or inserted between gaps in contiguous piles. Alternatively, for the contiguous pile walls, weepholes comprising 20mm diameter PVC pipes grouted into holes or gaps between adjacent piles at 1.2m centres (horizontal and vertical), may be used. The embedded end of the pipes must, however, be wrapped with a non-woven geotextile fabric (such as Bidim A34) to act as a filter against subsoil erosion;

For piles embedded into medium to high strength bedrock and below bulk excavation level, an allowable lateral toe resistance value of 350kPa may be adopted. This value assumes excavation is not carried out within the zone of influence of the wall toe and the rock does not contain adverse defects etc. The upper 0.3m depth of the socket should not be taken into account to allow for tolerance and disturbance effects during excavation.

If temporary anchors extend beyond the site boundaries, then permission from the neighbouring properties would need to be obtained prior to installation. Also, the presence of neighbouring

basements (if any) or services and their levels must be confirmed prior to finalising anchor design.

Anchors should have their bond length within low strength shale or better. For the design of anchors bonded into medium to high strength shale or better, an allowable bond stress value of 300kPa may be used, subject to the following conditions:

- Anchor bond lengths of at least 3m behind the 'active' zone of the excavation (taken as a 45-degree zone above the base of the excavation) is provided;
- Overall stability, including anchor group interaction, is satisfied;
- All anchors should be proof loaded to at least 1.33 times the design working load before locked off at working load. Such proof loading is to be witnessed by and engineer independent of the anchoring contractor. We recommend that only experienced contractors be considered for anchor installation with appropriate insurances;
- If permanent anchors are to be used, these must have appropriate corrosion provisions for longevity.

6.5 Foundation Design

It is expected that shale of at least medium to high strength to be exposed at bulk excavation level of RL73.20m. It is recommended that all footings for the building be founded within shale bedrock of similar strength to provide uniform support and reduce the potential for differential settlements.

Pad and strip footings founded within shale of at least medium to high strength may be designed for an allowable bearing capacity of 3500kPa, based on serviceability and subject to the completion on an additional cored borehole. In addition, an allowable shaft adhesion of 10% of the recommended bearing pressure may be used for rock sockets in medium to high strength shale or better provided the socket is satisfactory cleaned and roughened. All footings must be visually inspected by the geotechnical engineer.

A Higher Bearing Pressure of 6000kPa may be able to be adopted if excavation for deeper footings is allowed for, or piles are founded in high strength shale bedrock. If a higher bearing pressure of 6000kPa is to be adopted, then the completion of at least one additional cored borehole on the site particularly after demolition will be required together with spoon testing of at least 50% of all footings.

Should spoon testing be omitted, then the maximum allowable bearing pressure should be limited to 3500kPa. Perimeter piles founded in medium to high strength shale at the crest of a vertical cutting should be designed for a reduced allowable bearing pressure of 1500kPa provided the rock immediately below the pile toe is inspected by a geotechnical engineer to identify adverse defects and assess long term durability.

The allowable bearing pressures given above are based on serviceability criteria of settlements at the footing base of less than or equal to 1% of the minimum footing dimension.

Geotechnical inspections of foundations should be carried out by a geotechnical engineer to determine that the required socket and founding material has been achieved and determine any variations that may occur between the boreholes and inspected locations.

7. LIMITATIONS

The geotechnical assessment of the subsurface profile and geotechnical conditions within the proposed development area and the conclusions and recommendations presented in this report have been based on available information obtained during the work carried out by JC Geotechnics and in the provided documents listed in Section 2 of this report. Inferences about the nature and continuity of ground conditions away from and beyond the locations of field exploratory tests are made but cannot be guaranteed.

It is recommended that should ground conditions including subsurface and groundwater conditions, encountered during construction and excavation vary substantially from those presented within this report, JC Geotechnics Geosciences Pty Ltd be contacted immediately for further advice and any necessary review of recommendations. JC Geotechnics does not accept any liability for site conditions not observed or accessible during the time of the inspection.

This report and associated documentation and the information herein have been prepared solely for the use of **Alceon Group Pty Ltd** and any reliance assumed by third parties on this report shall be at such parties' own risk. Any ensuing liability resulting from use of the report by third parties cannot be transferred to JC Geotechnics Pty Ltd, directors or employees.

The conclusions and recommendations of this report should be read in conjunction with the entire report.

For and on behalf of

JC Geotechnics Pty Ltd

Robert Tu

Geotechnical Engineer

Reviewed By

Joseph Chaghouri BSc (Civil), MEngSc (PM), MEngSc (Geotech), MIEAust Principal Geotechnical Engineer

APPENDIX A

About Your Report

JC Geotechnics Pty Ltd | GR1102.1J Greenwich 15

JC GEOTECHNICS

INFORMATION ABOUT YOUR GEOTECHNICAL ENGINEERING REPORT

More construction problems are caused by site subsurface conditions than any other factor. As troublesome as subsurface problems can be, their frequency and extent have been lessened considerably in recent years, due in large measure to programs and publications of ASFE/ The Association of Engineering Firms Practicing in the Geosciences.

The following suggestions and observations are offered to help you reduce the geotechnical- related delays, cost-overruns and other costly headaches that can occur during a construction project.

A GEOTECHNICAL ENGINEERING REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

A geotechnical engineering report is based on a subsurface exploration plan designed to incorporate a unique set of project-specific factors. These typically include the general nature of the structure involved, its size and configuration, the location of the structure on the site and its orientation, physical concomitants such as access roads, parking lots, and underground utilities, and the level of additional risk which the client assumed by virtue of limitations imposed upon the exploratory program.

To help avoid costly problems, consult the geotechnical engineer to determine how any factors which change subsequent to the date of the report may affect its recommendations.

Unless your consulting geotechnical engineer indicates otherwise, your geotechnical engineering report should NOT be used:

- when the nature of the proposed structure is changed: for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an un-refrigerated one,
- when the size or configuration of the proposed structure is altered.
- when the location or orientation of the proposed structure is modified.
- when there is a change of ownership, or for application to an adjacent site.

Geotechnical engineers cannot accept responsibility for problems which may develop if they are not consulted after factors considered in their report's development have changed.

Geotechnical reports present the results of investigations carried out for a specific project and usually for a specific phase of the project. The report may not be relevant for other phases of the project, or where project details change.

The advice herein relates only to this project and the scope of works provided by the Client.

Soil and Rock Descriptions are based on AS1726- 1993, using visual and tactile assessment except at discrete locations where field and/or laboratory tests have been carried out. Refer to the attached terms and symbols sheets for definitions.

MOST GEOTECHNICAL "FINDINGS" ARE PROFESSIONAL ESTIMATES

Site exploration identifies actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent laboratory testing is extrapolated by geotechnical engineers who then render an opinion about overall subsurface conditions, their likely reaction to proposed construction activity, and appropriate foundation design. Even under optimal circumstances actual conditions may differ from those inferred to exist, because no geotechnical engineer, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimize their impact. For this reason, most experienced owners retain their geotechnical consultants through the construction stage, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems that encountered on site.

SUB SURFACE CONDITIONS CAN CHANGE

Subsurface conditions may be modified by constantly changing natural forces. Because a geotechnical engineering report is based on conditions which existed at the time of subsurface exploration, *construction decisions should not be based on a geotechnical engineering report whose adequacy may have been affected by time.* Speak with the geotechnical consultant to learn if additional tests are advisable before construction starts.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes or groundwater fluctuations may also affect subsurface conditions, and thus, the continuing adequacy of a geotechnical report. The geotechnical engineer should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

Subsurface conditions can change with time and can vary between test locations. Construction activities at or adjacent to the site and natural events such as flood, earthquake or groundwater fluctuations can also affect the subsurface conditions.

GEOTECHNICAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Geotechnical engineers' reports are prepared to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. Unless indicated otherwise, this report was prepared expressly for the client involved and expressly for purposes indicated by the client. Use by any other persons for any purpose, or by the client for a different purpose, may result in problems.

No individual other than the client should apply this report for its intended purpose without first conferring with the geotechnical engineer. No person should apply this report for any purpose other than that originally contemplated without first conferring with the geotechnical engineer.

A GEOTECHNICAL ENGINEERING REPORT IS SUBJECT TO MISINTERPRETATION

Costly problems can occur when other design professional develop their plans based on mis-interpretations of a geotechnical engineering report. To help avoid these problems, the geotechnical engineer should be retained to work with other appropriate design professionals to explain relevant geotechnical findings and to review the adequacy of their plans and specifications relative to geotechnical issues.

The interpretation of the discussion and recommendations contained in this report are based on extrapolation/ interpretation from data obtained at discrete locations. Actual conditions in areas not sampled or investigated may differ from those predicted.

JC GEOTECHNICS

BORING LOGS SHOULD NOT BE SEPARATED FROM THE ENGINEERING REPORT

Final boring logs are developed by geotechnical engineers based upon their interpretation of field logs (assembled by site personnel) and laboratory evaluation of field samples. Only final boring logs customarily are included in geotechnical engineering reports. These logs should not under any circumstances be redrawn for inclusion in architectural or other design drawings because drafters may commit errors or omissions in the transfer process. Although photographic reproduction eliminates this problem, it does nothing to of contractors the possibility minimize misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-too-frequent result.

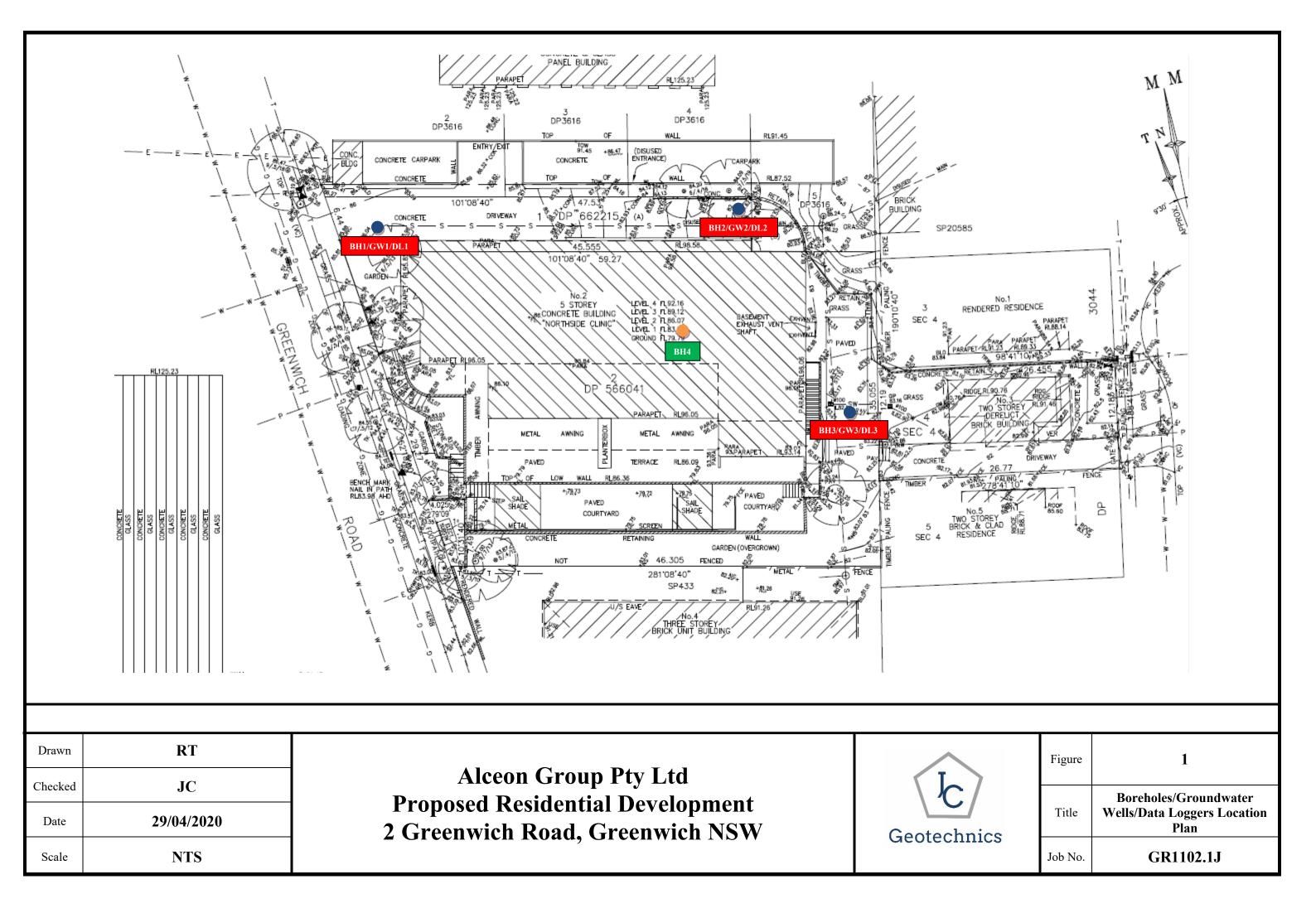
To minimize the likelihood of boring log misinterpretation, give contractors ready access in the complete geotechnical engineering report prepared or authorized for their use. Those who do not provide such access may proceed under mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes which aggravate them to disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because geotechnical engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against geotechnical consultants. To help prevent this problem, geotechnical engineers have developed model clauses for use in written transmittals. These are not exculpatory clauses designed to foist geotechnical engineers' liabilities onto someone else. Rather, they are definitive clauses which identify where geotechnical engineers' responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your geotechnical engineering report, and you are encouraged to read them closely. Your geotechnical engineer will be pleased to give full and frank answers to your questions.

OTHER STEPS YOU CAN TAKE TO REDUCE RISK

Your consulting geotechnical engineer will be pleased to discuss other techniques which can be employed to mitigate risk. In addition, ASFE has developed a variety of materials which may be beneficial. Contact ASFE for a complimentary copy of its publication's directory.


FURTHER GENERAL NOTES

Groundwater levels indicated on the logs are taken at the time of measurement and may not reflect the actual groundwater levels at those specific locations. It should be noted that groundwater levels can fluctuate due to seasonal and tidal activities.

This report is subject to copyright and shall not be reproduced either totally or in part without the express permission of the Company. Where information from this report is to be included in contract documents or engineering specifications for the project, the entire report should be included in order to minimize the likelihood of misinterpretation.

APPENDIX B

Borehole Location Plan

APPENDIX C

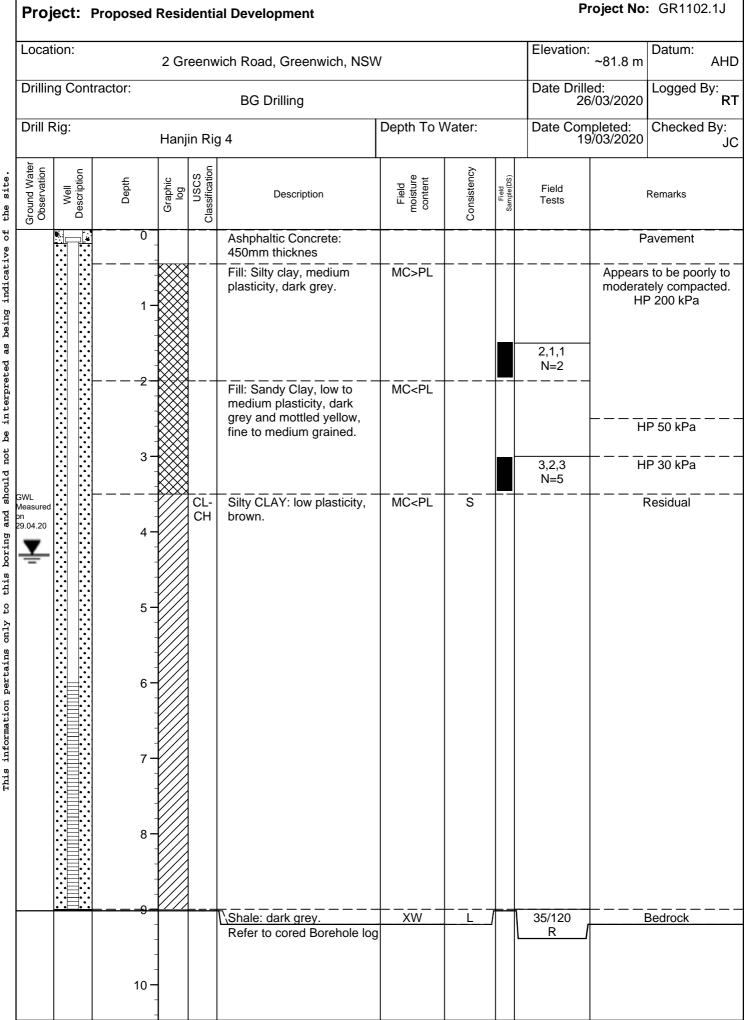
Engineering Borehole Logs with Core Photographs

Proj	ject:	Propose	ed Res	sidenti	al Development				Pi	roject No:	GR1102	2.1J
Locat	tion:		2 (Greenv	vich Road, Greenwich, NSV	V			Elevation	n: ~86.0m	Datum:	AHD
Drillir	ng Cont	tractor:			BG Drilling				Date Dril 1	led: 9/03/2020	Logged	By: RT
Drill F	Drill Rig: Hanjin Rig 4		g 4	Depth To Water:		Date Cor 1	npleted: 9/03/2020	Checked	d By: JC			
Ground Water Observation	Well Description	Depth	Graphic	log USCS Classification	Description	Field moisture content	Consistency	Field Sample(DS)	Field Tests		Remarks	
0			0		Asphaltic Concrete: 350mm thickness	<u>ו</u>	+			P	avement	
			1-	×	FILL: Silty Clay, low plasticity, dark brown mottled brown, trace fine to coarse grained gravel.	MC <pl< td=""><td></td><td></td><td></td><td></td><td>rs to be po ompacted</td><td>orly</td></pl<>					rs to be po ompacted	orly
				8	Fill: Silty Clay, low	MC <pl< td=""><td></td><td></td><td>1,1,4 N=5</td><td><u>+</u></td><td> P 50kPa</td><td></td></pl<>			1,1,4 N=5	<u>+</u>	 P 50kPa	
			2-8	×	fine to medium grained shale and ironstone gravel.					1−−−	 P 10 kPa	
				×						<u>⊢</u> н	 P 10kPa	
			3-X -X						2,9,15 N=24	Appears t well	o be mode compacte	
			4-									
			5-						5,8,8 N=16			
			- 1	×	SHALE: red brown.			+ +		+	Bedrock	
GWL Measured					Refer to cored borehole			++				
on 29.04.20			- 7 - -		log.							
			- - 8 - - -									
			- - 9 - -									
		1	- - - 0 - -									
		hnice	-									

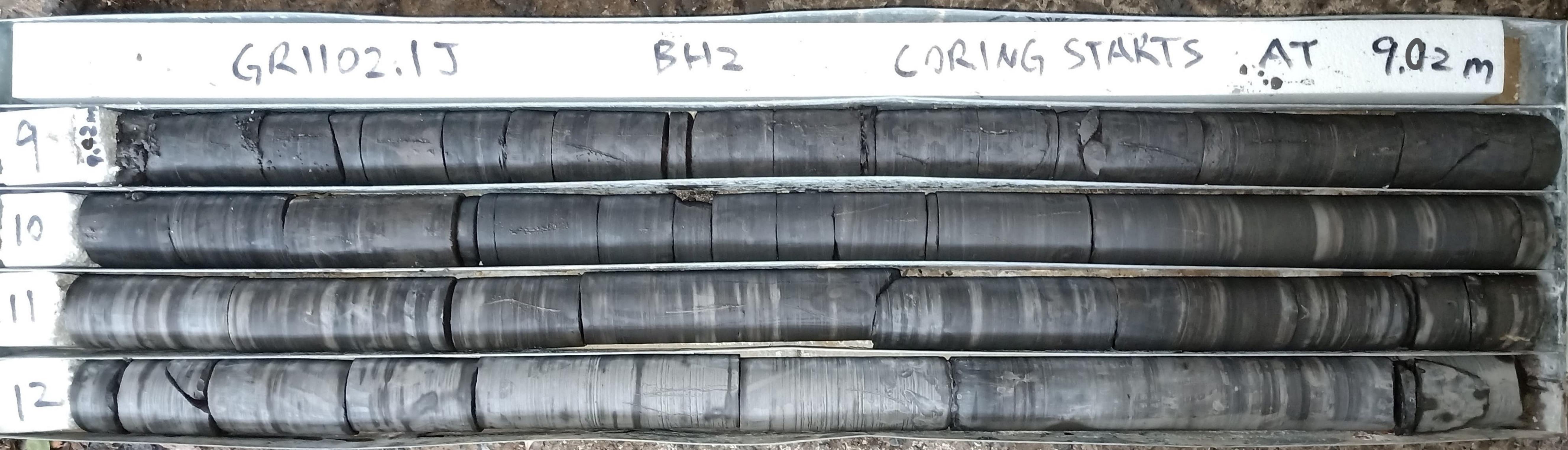
Client: Alceon Group Pty Ltd

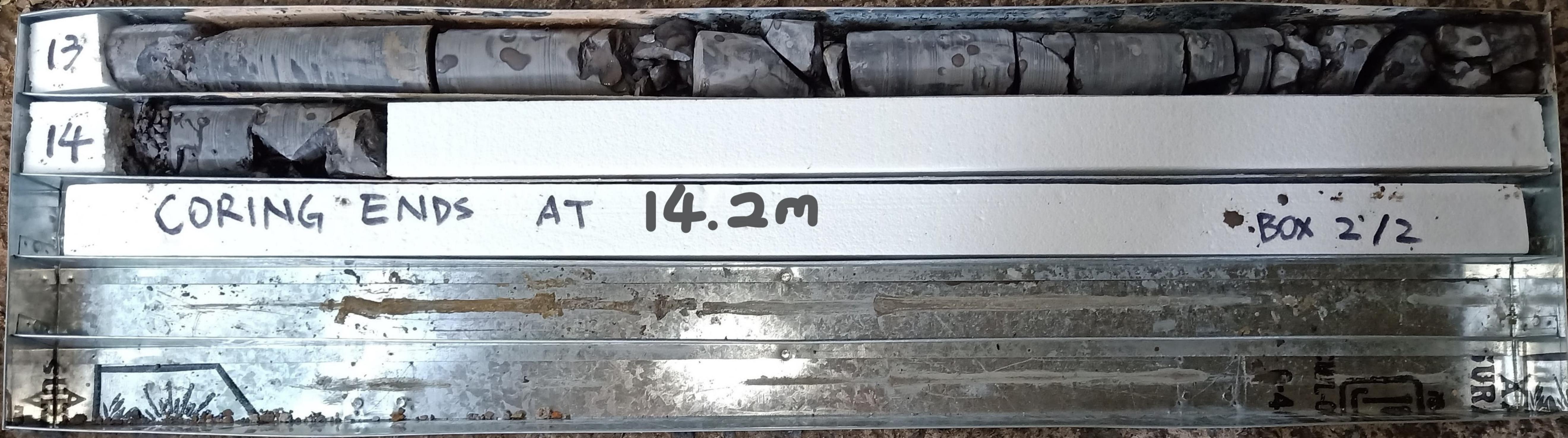
Borehole No: 1

			CORING LOG	DF	BOR	REHOLE	E NO. 1			
Client: Alceon Group Pty Ltd							Project No	o.: GR1102.	.1J	
Projec	t: Propose	d Residenti	ial Development				Logged By: RT			
Locati	on: 2 Greer	wich Road	d, Greenwich, NSW				Checked E	By: JC		
Drillin	g Plant/Meth	nod: Hanji	n Rig 4				Elevation:	86.0m AH	D	
Date Drilled: 19/03/2020 Completed: 19/03/2020 Casing Depth:										
Depth To Water: TOTAL DEPTH: 17.4 m								m		
Well Description	Depth (m)	Graphic Log	Material Descrption	Weathering Condition	Strength		FECT RIPTION	Defect Spacing mm 0000000000000000000000000000000000	0:01-01 0:01-01 0:01-01 0:02-01 0:02-01 0:02-01 0:02-01 0:02-01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0	
	7		START CORING AT 6.31m SHALE: Dark grey, sandstone laminated.	xw	VL-L	6.61,JT, 6.76,F 6.81,JT, 6.81,JT, 6.81,JT, 7.00,F 7.01,Fracture 7.91,Fracture 8.847,JT,2 8.58,Fl 8.81,JT,2 8.90,F 9.28,Be,0-1 9.61,Be,0-2 9.28,Be,0-1 9.61,Be,0-2 9.54,Be,0-1 9.61,Be,0-2 9.54,Be,0-1 9.61,Be,0-2 9.61,Be,0-2 10.05,Be,0-1 10.05,Be,0-1 10.05,Be,0-1 10.55,Be,0-	R,50mm 90°,50mm R,50mm R,50mm R,50mm R,50mm R,50mm S,50mm S,70mm 5°,PL,SM,CN Co ³ ,50mm R,120mm R,120mm R,120mm R,120mm R,120mm S,00,00 S,00mm S,00 S			
	15 _					14.73,Be,0	-5°,PL,SM,CN			


		Cori	ng Log Of Boreł	nole	e No	.1 (C	CONTIN	UED)				
Projec	ct: Propose	d Resident	ial Development				Project No.: GR1102.1J					
Locat	ion: 2 Greer	wich Road	d, Greenwich, NSW				Site Engine	eer: RT				
Well Description	Depth (m)	Graphic Log	Material Descrption	Weathering Condition	Strength	DEFECT DESCRIPTION		Defect Spacing mm		ut Foad(a) EH>10.0 EH>10.0 EH>10.0		
De				šυ	0			000000000000000000000000000000000000000	.04 0.1 0	<u>).3 1 2 3</u>	58	
	- - - 16 -				- — –	<u>15.14,Be,0</u> 15.17,Be,0	<u>-5°,PL,SM,CN</u>		· · · · · · · · · · · · · · · · · · ·	•		
	- - -					16.62,Be,0	5°,PL,SM,CN			•		
	17								:::::: :	•	·····	
	- - - 18 - -		End of borehole at 17.4m.									
	- - 19 — -											
	- - 20 - -											
	- - 21 – -									· · · · · · · · · · · · · · · · · · ·		
	- 22 - - -											
	- 23 – - -											
	- 24 — - -											
	- 25 – -								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

GRII02.1J

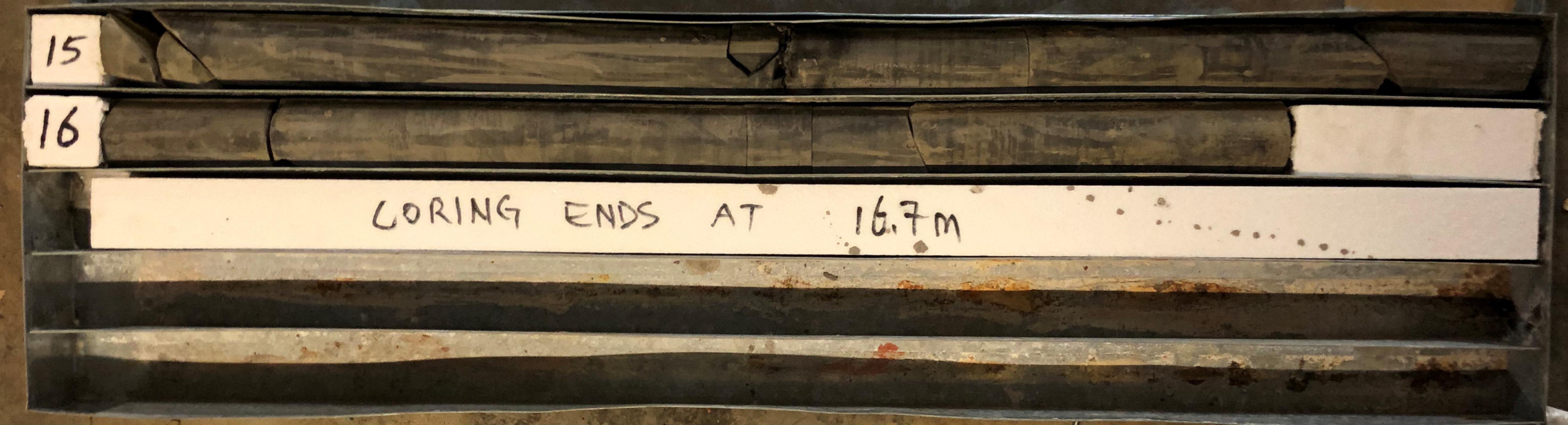




Client: Alceon Group Pty Ltd

Borehole No: 2

		CORING LOG)F I	BOR	REHOLE	E NO. 2		
Client:		Alceon Group Pty Ltd				Project No.	: GR1102.	1J
Project: Proposed	Project: Proposed Residential Development Logged By: RT							
Location: 2 Greenv	wich Road	l, Greenwich, NSW				Checked B	y:	
Drilling Plant/Metho	od: Hanjir	n Rig 4		Elevation:	81.8mAHD			
Date Drilled: 19/03/	/2020	Casing Dep	oth:					
Depth To Water:						TOTAL DE		
Well Description Depth (m)	Graphic Log	Material Descrption	Weathering Condition	Strength		FECT RIPTION	Defect Spacing mm	Соороно Сооро
		START CORING AT 9.02m SHALE: Dark grey, sandstone laminated. SHALE: Dark grey, sandstone laminated. SHALE: Dark grey, sandstone laminated. End of Borehole at 14.2m	sw		9.12,Be,5 9.17,Be,10 9.29,Be,5 9.32,Be,5 9.33,Be,5 9.33,Be,5 9.33,Be,5 9.68,F 9.68,F 9.68,F 9.89,Be,5 9.89,Be,5 9.89,Be,5 9.89,Be,5 9.89,Be,5 9.89,Be,5 10.26,Be,0- 10.57,Be,0- 10.57,Be,0- 10.58,Be,0- 11.25,Be,0- 11.24,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.03,Be,0- 12.13,Be,0- 13.05,F 13.30,F 13.30,F 13.30,F 13.49,Be,20- 13.66,Be,0- 13.74,Be,0- 13.74,Be,0- 13.66,Be,0- 13.74,Be,0- 13.74,Be,0- 13.74,Be,0- 13.66,Be,0- 13.74,Be,0- 13.74,Be,0- 13.74,Be,0- 13.74,Be,0- 13.49,Be,20- 13.49,Be,20- 13.49,Be,20- 13.40,Be,0- 13.49,Be,0- 13.40,B,Be,0- 13.40,B,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 13.40,Be,0- 14.10,Be,0- 13.40,Be,0- 1	S.20mm		


		eon Grou roposed l		-	al Development				Borehole Project N	-	02.1J	
Locat	tion:		2 Gr	eenw	rich Road, Greenwich, NSV	V			Elevation:	: 83.2 m	Datum: A	HD
Drillir	ng Contra	actor:			BG Drilling				Date Drill	ed:)/03/2020	Logged By:	RT
Drill F	Rig:		Hanj	in Riç	<u>j</u> 4	Depth To V	Vater:		Date Com 20	npleted:)/03/2020	Checked By	y: JC
Ground Water Observation	Well Description	Depth	Graphic log	USCS Classification	Description	Field moisture content	Consistency	Field Sample(DS)	Field Tests		Remarks	
			\otimes	===	Brick Pavement: 40mm	MC <pl< td=""><td>====</td><td>╞╪</td><td>=====</td><td></td><td>avement</td><td></td></pl<>	====	╞╪	=====		avement	
				CH	thickness / FILL: Silty Clay, low [plasticity, black, trace root] [and organic contents] Silty CIAY: High plasticity, [ight grey.	MC>PL	VSt				rs to be poorl o <u>mpacted</u> Residual	у — —
		-							2,9,15 N=24			
		- — — -2 — - - -			Silty CLAY: Low plasticity, dark grey.	MC <pl< td=""><td> S</td><td></td><td></td><td></td><td></td><td></td></pl<>	 S					
		3- - - - 4-							3,5,14 N=19			
		- - - 5 —							4,8,13/75 N>21			
		- 			SHALE: grey.			+		 	 Bedrock	
GWL Measu on 29.04.2					Refer to cored borehole log.							
T		7 —										
		-										
		9 — - -										
		10 —										
		nico Dt				1	I			I		

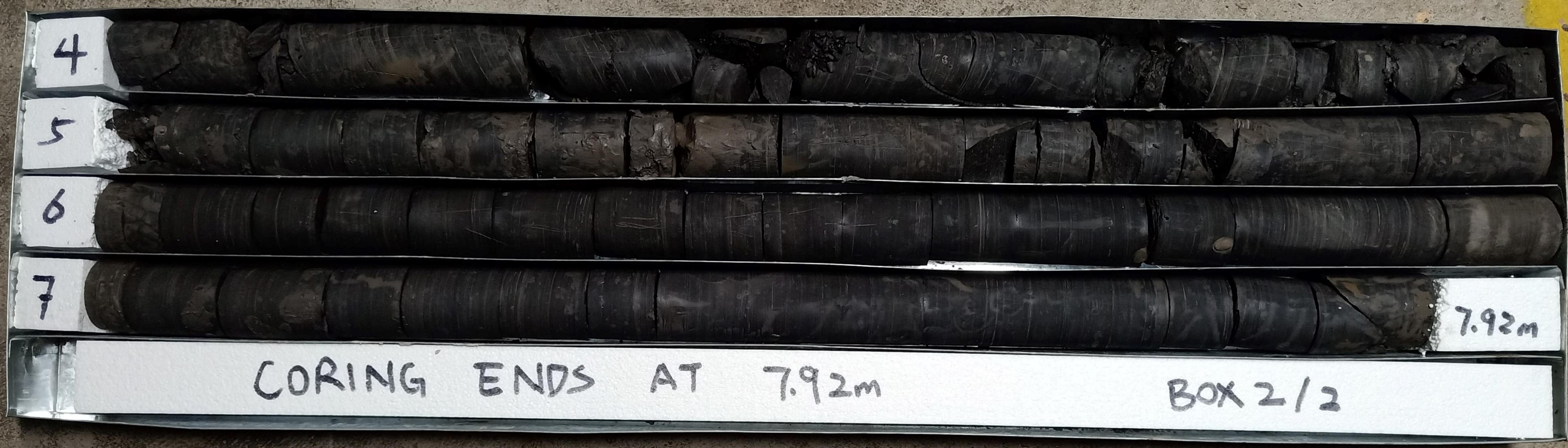
Client: Alceon Group Pty Ltd Project No.: GP1102.1.											
Client: Alceon Group Pty Ltd							Project No.: GR1102.1J				
Project: Proposed Residential Development								Logged By: RT			
Location: 2 Greenwich Road, Greenwich, NSW							Checked By:				
Drilling Plant/Method: Hanjin Rig 4							Elevation: 83.2 mAHD				
Date Drilled: 19/03/2020 Completed: 19/03/2020							Casing Depth:				
Depth To Water:							TOTAL DEPTH: 16.7 m				
Well Description	- Graphic Material Condition Description Condition Description Condition					ut Foaq(a) EH>10.0 EH>10.0					
	6	>	START CORING AT 6.0m	≤ 0 XW	EL	6.02,Be,0-	5°,PL,SM,CN	858580	.04 0.1 0	<u>).3 1 2 3 5 8</u>	
	- - - 7 - - - -		SHALE: Dark grey, sandstone laminated.			6.41,F 6.62,Ff 6.88,Ff 7.25,Be, 0-1 7.33,Be,0-1 27.41,F	0-5°.RO,VN R,30mm R,150mm R,120mm R,120mm 0°.PL,SM,CN R.80mm				
	8-			DW			R, <u>60mm</u> R,10mm		•		
							R,240mm 0°,PL,SM,CN		· · · · · · · · · · · · · · · · · · ·		
	- - 9 - - - - - - - - - - - - - - - - -					8.47,Be,(8.70,JT,4 8.88,Be,0-1 8.93,Be,0-1 9.09,Be,0-1 9.22,Be,0-1 9.22,Be,0-1 9.53,Be,0-1 9.72,Be,0	0°,PL,SM,CN -5°,RO,VN -50°,20mm 5°,PL,SM,CN 5°,PL,SM,CN 5°,PL,RO,VN 5°,PL,RO,VN 8°,PL,SM,CN 8°,PL,SM,CN 8°,PL,SM,CN 8°,PL,SM,CN 10°,PL,RO,VN		•		
	11-			sw	М-Н	<u>10.48,</u> 10.58,Be,200 10.63,Be, 10.72,Be, 10.77,Be, 10.79,JT,7 11.16,Be, 11.30,F 11.30,F	R,10mm R,10mm 30°,PL,SM,CN 0-5°,RO,VN 0-5°,RO,VN 0-80°,30mm 0-80°,30mm 0-80°,RO,VN 0-5°,RO,VN			•	
	12 -			FR	H	11.52,Be,0- <u>11.55,Be</u> ,0-3	R,30mm 5°,PL,SM,CN 30°,PL,SM,CN 10°,PL,SM,CN		· · · · · · · · · · · · · · · · · · ·		
	- - - - - - - - - - - - - - - - - - -			MW	M H	11.88.Be, 12.05.Be, 12.14.Be, 12.26,Be, 12.41,Be, 12.41,Be, 12.54.Be, 12.71,Be, 13.02,Be,0 13.27,Be,0 13.27,Be,0 13.27,Be,0 13.36,Be,0	0-20° RO, VN 0-5°, RO, VN 0-10°, RO, VN 5°, PL, SM, CN 5°, PL, RO, VN 5°, PL, SM, CN 5°, S1, SM, SM, SM, SM, SM, SM, SM, SM, SM, SM			•	
	-					13.54,F 13.62,Be,0-	<u>FR,30mm</u> FR,80mm ·5°,PL,RO,VN ·5°,PL, <u>SM,CN</u>		· · · · · · · · · · · · · · · · · · ·	•	
			JC Geo	tech	nics Pt	/ Ltd					

Coring Log Of Borehole No. 3 (CONTINUED)											
Project: Proposed Residential Development							Project No.: GR1102.1J				
Location: 2 Greenwich Road, Greenwich, NSW							Site Engineer: RT				
Well Description	Depth (m)	Graphic Log	Material Descrption	Weathering Condition	Strength	DEFECT DESCRIPTION		Defect 001-02014 Spacing mm 10-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014 001-02014			
De				Š٥	S	13.95.Be.	0-5°,RO,VN	000 000 000 000 000 000 000 000 000 00	.04 0.1 0.3 1	2358	
	- 15 – - -					14.54,I 14.74,Be,0-: 14.91,I 15.02,I 15.02,I 15.45,I	R,50mm 20°,PL,SM,CN FR,40mm R,50mm 			•	
	- 16 - -						0-5°,RO,VN — —				
	- 17 - -		End of Borehole at 16.7m								
	- 18 - -										
	- - 19 - -										
	- - 20 — -										
	- 21 - -										
	- - - - -										
	- - - 23 – -										
	- - - 24 -										
	-		JC Ge	otechr	nics Pty	/ Ltd					

Client: Alceon Group Pty Ltd Project: Proposed Residential Development

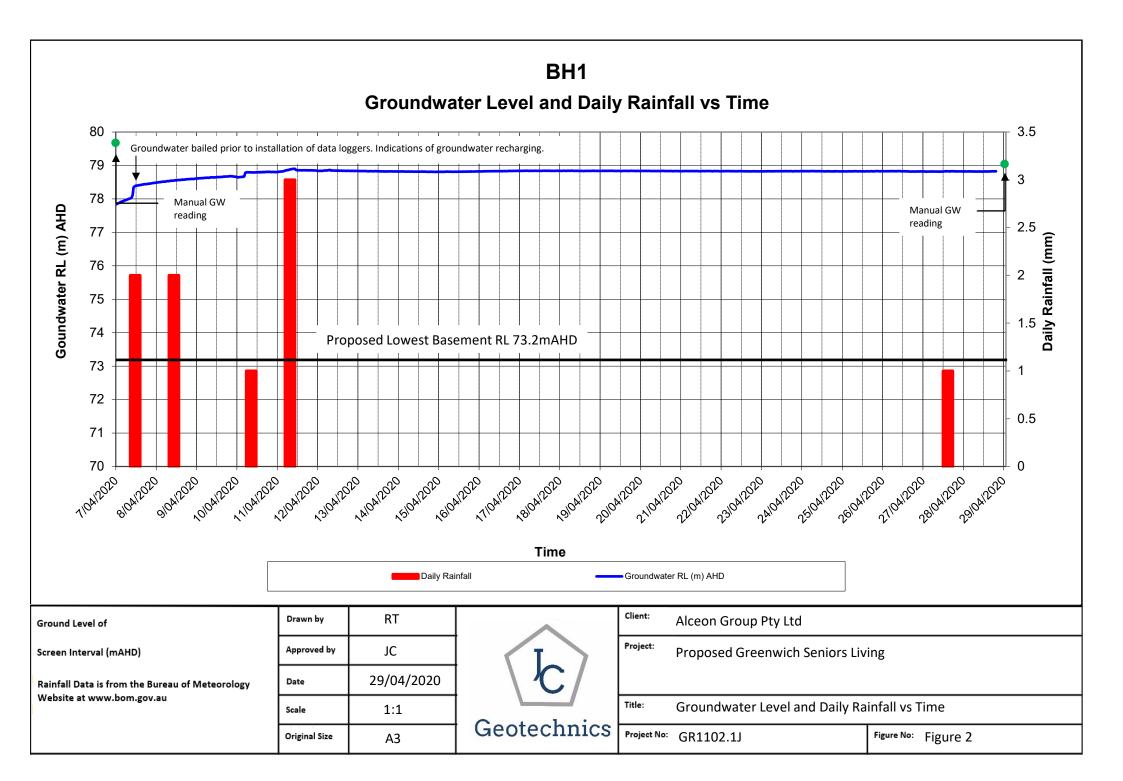
Borehole No: 4

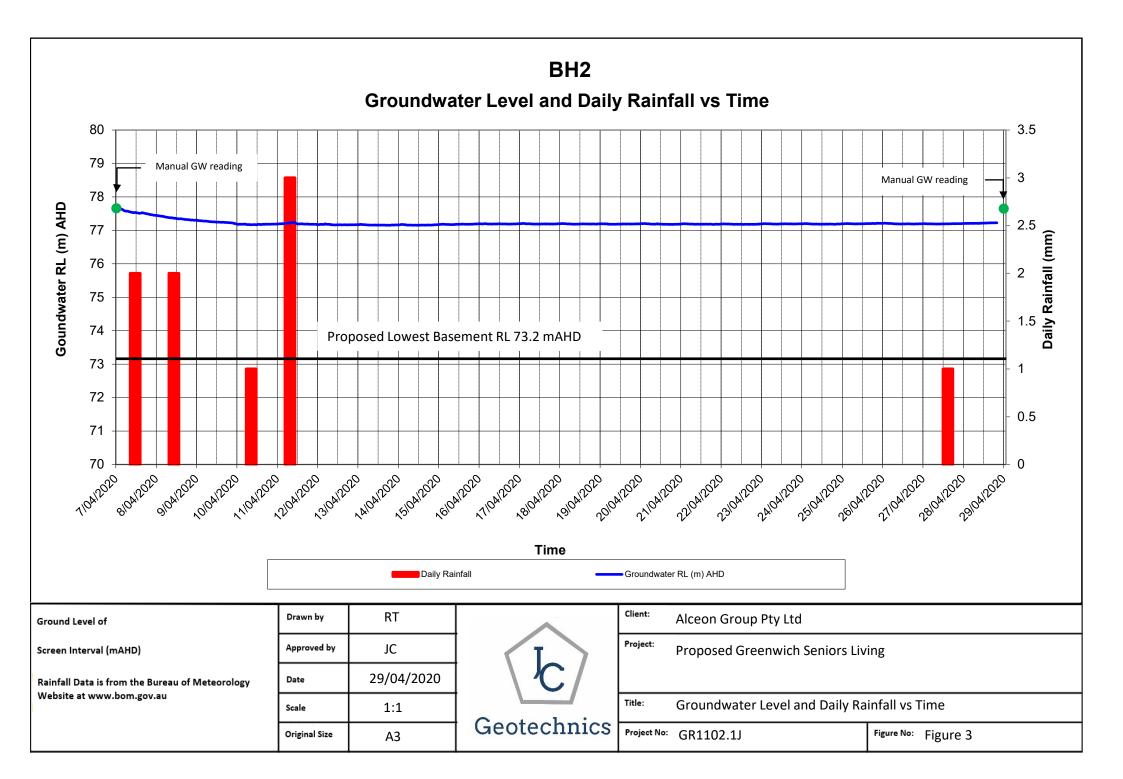
Project No: GR1102.1J

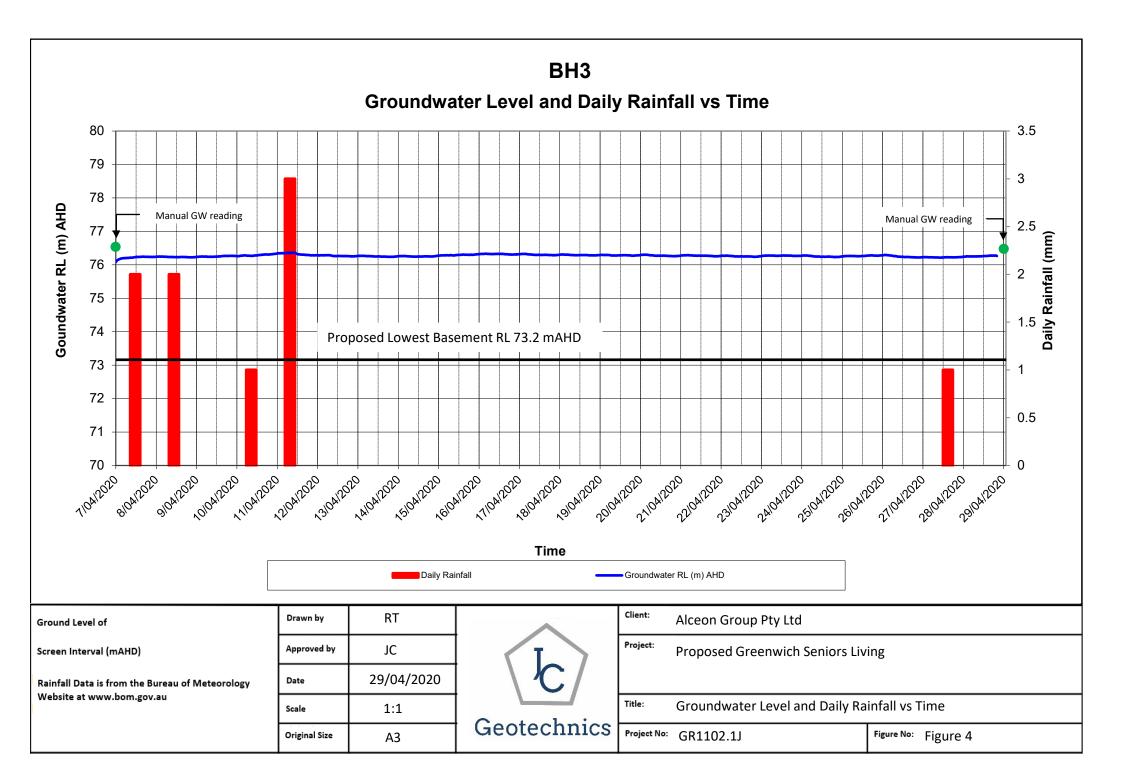

Locat									Elevation		Datum:
		las of	2 G	reenw	vich Road, Greenwich, NSV	V				76.7m	AHC AHC
Drillin	g Con	tractor:			BG Drilling				Date Drill	ed: 1/03/2020	Logged By: R1
Drill F	Rig:	g: Hand portable			able	Depth To \	Water:		Date Con	npleted: 9/03/2020	Checked By: JC
Ground Water Observation	Well Description	Depth	Graphic log	USCS Classification	Description	Field moisture content	Consistency	Field Sample(DS)	Field Tests		Remarks
					Conrete Slab: 210mm		<u> </u>				avement
			_///	CL-	<u>thickness</u> / Silty clay: medium		\bot				Residual P 250kPa
		1	-		<u>plasticity, dark grey.</u> <u>Shale: dark grey.</u> Refer Cored Borehole log.						Bedrock
		2	-								
		3	-								
		4									
		5	-								
		6	-								
		7	-								
		8	- - - -								
		9	-								
		10									

			CORING LOG	DF	BOF	REHOLE	E NO. 4		
Client:	Client: Alceon Group Pty Ltd Project No.: GR1102.1J								.1J
Project: Proposed Residential Development Logged By: RT									
Locatio	on: 2 Greer	wich Road	d, Greenwich, NSW				Checked B	y:	
Drilling	Plant/Meth	nod: Hanji	n Rig 4				Elevation:	76.7 mAH	D
Date Dr	rilled: 19/0	3/2020	Completed:	19/03	3/2020		Casing Dep	oth:	
Depth 1	To Water:						TOTAL DE	PTH: 7.92	m
Well Description	Depth (m)	Graphic Log	Material Descrption	Weathering Condition	Strength		FECT RIPTION	Defect Spacing mm	EL<0.03 VL0.03-0.1 L 0.1-0.3 M 0.3-1.0 H 1.0-3.0 H 1.0-3.0 C HH 1.0-3.0
De	-	-		-				00000000000000000000000000000000000000	Point Load(a) 1.04 0.1 0.3 1 2 3 5
	- 1- - -	>	ן START CORING AT 0.51m SHALE: Dark grey, sandstone <u>laminated.</u> <u>NO CORE.</u> SHALE: Dark grey, sandstone laminated.	HW	<u>VL</u> vL	1.00,crushe 1.12,F 1.14,Be,0- 1.29,Be,0- 1.35,Be,0- 1.35,Be,0- 1.38,F	5° PL, RO, VN 5° PL, RO, VN R, 20mm 5° PL, RO, VN 5° PL, RO, VN 5° PL, RO, VN 8° PL, RO, VN R, 10mm 5° PL, RO, VN 8° PL, RO, VN 5° PL, RO, VN 5° PL, RO, VN 5° PL, RO, VN		•
	2 -		No Core	ΪΞ.	<u> </u>	<u>1.5</u> 9,J <u>1.67,crushe</u>	T,25mm		
	-		SHALE: Dark grey, sandstone laminated.			1.73,Be,0-	T,10mm 5°,PL,RO,VN R 20mm		•
	3		SHALE: Black, sandstone laminated.	sw	L - M - H - H	1.92.crushe 2.23.crushe 2.56.Be,0. 2.56.Be,0. 2.263.E 2.82,Be,0. 2.93,Be,0. 3.02,Be,0. 3.02,Be,0. 3.02,Be,0. 3.14,Be,0.1 3.20,Be,0. 3.22,Be,0. 3.22,Be,0. 3.22,Be,0. 3.22,Be,0. 3.22,Be,0. 3.22,Be,0. 3.32,Be,0. 3.32,Be,0. 3.20,Be,0. 3.32,Be,0. 3.46,E 3.64,Be,0.1 3.44,Be,0.1 3.44,Be,0.1 3.44,Be,0.1 3.44,Be,0.1 3.44,Be,0.1 4.33,crushe 5.00,crushe 5.63,Be,0. 5.64,Be,0. 5.74,Be,0. 5.74,Be,0. 6.02,Be,0. 6.73,Be,0. 6.73,Be,0. 7.23,Be,0. 7.23,Be,0. 7.23,Be,0. 7.23,Be,0. 7.57,Be,0. <	R.20mm		
	-								
	9 -		.IC Geo						

_____ JC Geotechnics Pty Ltd _




CORE LOSS FROM 0.60m = 0.96m the second of the second states



APPENDIX D

Groundwater Monitoring Plots

APPENDIX E

Laboratory Testing Results

CERTIFICATE OF ANALYSIS

Work Order	ES2011478	Page	: 1 of 2	
Client	: JC Geotechnics	Laboratory	Environmental Division S	ydney
Contact	: Joseph Chaghouri	Contact	: Customer Services ES	
Address	Shop 2-4 143-146 Parramatta Road	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
	Concord 2137			
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: GR1102.1J Greenwich	Date Samples Received	: 02-Apr-2020 17:05	ANHUR.
Order number	:	Date Analysis Commenced	: 03-Apr-2020	
C-O-C number	:	Issue Date	06-Apr-2020 15:30	
Sampler	: Robert			Hac-MRA NATA
Site	:			
Quote number	: EN/333			Accreditation No. 825
No. of samples received	: 3			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH1(1.5m-1.95m)	BH3(1.5m-1.95m)	BH4(0.4m-0.5m)	
	Cl	ient sampli	ng date / time	19-Mar-2020 09:30	20-Mar-2020 11:00	31-Mar-2020 12:30	
Compound	CAS Number	LOR	Unit	ES2011478-001	ES2011478-002	ES2011478-003	
				Result	Result	Result	
EA002: pH 1:5 (Soils)							
pH Value		0.1	pH Unit	9.0	5.6	5.5	
EA010: Conductivity (1:5)							
Electrical Conductivity @ 25°C		1	µS/cm	463	119	69	
EA055: Moisture Content (Dried @ 105-11	10°C)						
Moisture Content		0.1	%	14.3	14.5	14.0	
ED040: Sulfur as SO4 2-							
Sulfate as SO4 2-	14808-79-8	100	mg/kg	380	280	290	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	10	mg/kg	150	60	<10	

QUALITY CONTROL REPORT

Work Order	: ES2011478	Page	: 1 of 3	
Client	: JC Geotechnics	Laboratory	: Environmental Division Sydney	
Contact	: Joseph Chaghouri	Contact	Customer Services ES	
Address	Shop 2-4 143-146 Parramatta Road Concord 2137	Address	: 277-289 Woodpark Road Smith	field NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: GR1102.1J Greenwich	Date Samples Received	: 02-Apr-2020	
Order number	:	Date Analysis Commenced	03-Apr-2020	
C-O-C number	:	Issue Date	06-Apr-2020	
Sampler	: Robert			AC-MRA NATA
Site	:			
Quote number	: EN/333			Accreditation No. 825
No. of samples received	: 3			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory D	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA002: pH 1:5 (Soils	EA002: pH 1:5 (Soils) (QC Lot: 2952972)								
ES2011367-001	Anonymous	EA002: pH Value		0.1	pH Unit	7.8	6.5	18.0	0% - 20%
EA010: Conductivity	EA010: Conductivity (1:5) (QC Lot: 2952971)								
ES2011312-003	Anonymous	EA010: Electrical Conductivity @ 25°C		1	μS/cm	2600	2670	2.77	0% - 20%
EA055: Moisture Cor	ntent (Dried @ 105-110°C)(QC Lot: 2953664)							
EP2003290-036	Anonymous	EA055: Moisture Content		0.1	%	14.4	13.8	4.72	0% - 20%
ED040T : Total Sulfat	te by ICPAES (QC Lot: 295	2504)							
ES2011478-001	BH1(1.5m-1.95m)	ED040T: Sulfate as SO4 2-	14808-79-8	100	mg/kg	380	340	11.5	No Limit
ED045G: Chloride by	Discrete Analyser (QC Lo								
ES2011367-001	Anonymous	ED045G: Chloride	16887-00-6	10	mg/kg	10	10	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL		Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA010: Conductivity (1:5) (QCLot: 2952971)								
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 µS/cm	105	92.0	108
ED040T : Total Sulfate by ICPAES (QCLot: 2952)	504)							
ED040T: Sulfate as SO4 2-	14808-79-8	100	mg/kg	<100				
ED045G: Chloride by Discrete Analyser (QCLot:	2952973)							
ED045G: Chloride	16887-00-6	10	mg/kg	<10	50 mg/kg	91.9	75.0	125
				<10	5000 mg/kg	93.4	79.0	117

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045G: Chloride I	by Discrete Analyser (QCLot: 2952973)						
ES2011367-001	Anonymous	ED045G: Chloride	16887-00-6	1250 mg/kg	104	70.0	130

	QA/QC Compliance Assessment to assist with Quality Review					
Work Order	: ES2011478	Page	: 1 of 5			
Client	: JC Geotechnics	Laboratory	: Environmental Division Sydney			
Contact	: Joseph Chaghouri	Telephone	: +61-2-8784 8555			
Project	: GR1102.1J Greenwich	Date Samples Received	: 02-Apr-2020			
Site	:	Issue Date	: 06-Apr-2020			
Sampler	: Robert	No. of samples received	: 3			
Order number	:	No. of samples analysed	: 3			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page	: 2 of 5
Work Order	: ES2011478
Client	: JC Geotechnics
Project	: GR1102.1J Greenwich

Outliers : Analysis Holding Time Compliance

Matrix:	SOIL	

Method	E	traction / Preparation		Analysis		
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days
EA002: pH 1:5 (Soils)			overdue			overdue
Snap Lock Bag						
BH1(1.5m-1.95m)	03-Apr-2020	26-Mar-2020	8			
Snap Lock Bag						
BH3(1.5m-1.95m)	03-Apr-2020	27-Mar-2020	7			
EA010: Conductivity (1:5)						
Snap Lock Bag						
BH1(1.5m-1.95m)	03-Apr-2020	26-Mar-2020	8			
Snap Lock Bag						
BH3(1.5m-1.95m)	03-Apr-2020	27-Mar-2020	7			
EA055: Moisture Content (Dried @ 105-110°C)						
Snap Lock Bag						
BH1(1.5m-1.95m)				03-Apr-2020	02-Apr-2020	1
ED040: Sulfur as SO4 2-						
Snap Lock Bag						
BH1(1.5m-1.95m)	03-Apr-2020	26-Mar-2020	8			
Snap Lock Bag						
BH3(1.5m-1.95m)	03-Apr-2020	27-Mar-2020	7			

Outliers : Frequency of Quality Control Samples

Matrix: SOIL

Quality Control Sample Type	Co	unt	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Moisture Content	1	13	7.69	10.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

1	Matrix: SOIL Evaluation: × = Holding time breach ; ✓ = Within holding time							
	Method	Sample Date	E	traction / Preparation		Analysis		
	Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Matrix: SOIL				Evaluatior	n: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA002: pH 1:5 (Soils)							
Snap Lock Bag (EA002)							
BH1(1.5m-1.95m)	19-Mar-2020	03-Apr-2020	26-Mar-2020	<u>*</u>	03-Apr-2020	03-Apr-2020	✓
Snap Lock Bag (EA002) BH3(1.5m-1.95m)	20-Mar-2020	03-Apr-2020	27-Mar-2020	<u>x</u>	03-Apr-2020	03-Apr-2020	1
Snap Lock Bag (EA002)							
BH4(0.4m-0.5m)	31-Mar-2020	03-Apr-2020	07-Apr-2020	✓	03-Apr-2020	03-Apr-2020	 ✓
EA010: Conductivity (1:5)							
Snap Lock Bag (EA010)							
BH1(1.5m-1.95m)	19-Mar-2020	03-Apr-2020	26-Mar-2020	*	03-Apr-2020	01-May-2020	✓
Snap Lock Bag (EA010) BH3(1.5m-1.95m)	20-Mar-2020	03-Apr-2020	27-Mar-2020	£	03-Apr-2020	01-May-2020	~
Snap Lock Bag (EA010)			07.4 0000				
BH4(0.4m-0.5m)	31-Mar-2020	03-Apr-2020	07-Apr-2020	✓	03-Apr-2020	01-May-2020	✓
EA055: Moisture Content (Dried @ 105-110°C)							
Snap Lock Bag (EA055)	40.14.0000					00.4	
BH1(1.5m-1.95m)	19-Mar-2020				03-Apr-2020	02-Apr-2020	*
Snap Lock Bag (EA055)	20-Mar-2020				03-Apr-2020	03-Apr-2020	
BH3(1.5m-1.95m)	20-11/12/2020				03-Apr-2020	03-Api-2020	✓
Snap Lock Bag (EA055) BH4(0.4m-0.5m)	31-Mar-2020				03-Apr-2020	14-Apr-2020	1
ED040: Sulfur as SO4 2-						1	-
Snap Lock Bag (ED040T)							
BH1(1.5m-1.95m)	19-Mar-2020	03-Apr-2020	26-Mar-2020	<u>*</u>	03-Apr-2020	01-May-2020	✓
Snap Lock Bag (ED040T)							
BH3(1.5m-1.95m)	20-Mar-2020	03-Apr-2020	27-Mar-2020	<u>*</u>	03-Apr-2020	01-May-2020	✓
Snap Lock Bag (ED040T)	04 Mar 0000	00.4	07 4 == 0000		00.4	04 May 2020	
BH4(0.4m-0.5m)	31-Mar-2020	03-Apr-2020	07-Apr-2020	~	03-Apr-2020	01-May-2020	✓
ED045G: Chloride by Discrete Analyser							
Snap Lock Bag (ED045G) BH1(1.5m-1.95m)	19-Mar-2020	03-Apr-2020	16-Apr-2020	1	03-Apr-2020	01-May-2020	~
Snap Lock Bag (ED045G)				_	· · ·	-	-
BH3(1.5m-1.95m)	20-Mar-2020	03-Apr-2020	17-Apr-2020	1	03-Apr-2020	01-May-2020	✓
Snap Lock Bag (ED045G)							
BH4(0.4m-0.5m)	31-Mar-2020	03-Apr-2020	28-Apr-2020	 ✓ 	03-Apr-2020	01-May-2020	\checkmark

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: 🗴 = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected Evaluation		
Laboratory Duplicates (DUP)							
Chloride Soluble By Discrete Analyser	ED045G	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	1	13	7.69	10.00	×	NEPM 2013 B3 & ALS QC Standard
рН (1:5)	EA002	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate as SO4 2- Total	ED040T	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Chloride Soluble By Discrete Analyser	ED045G	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride Soluble By Discrete Analyser	ED045G	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	4	25.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate as SO4 2- Total	ED040T	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Chloride Soluble By Discrete Analyser	ED045G	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on soil samples after a
			1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples
			using a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C.
			This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Sulfate as SO4 2- Total	ED040T	SOIL	In house: Total Sulfate is determined off a HCI digestion by ICPAES as S , and reported as SO4
Chloride Soluble By Discrete Analyser	ED045G	SOIL	In house: Referenced to APHA 4500-CI- E. The thiocyanate ion is liberated from mercuric thiocyanate through
			sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions
			the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm. Analysis is
			performed on a 1:5 soil / water leachate.
Preparation Methods	Method	Matrix	Method Descriptions
HCI Digest	EN24	SOIL	1g of soil is digested in 30 ml of 30% HCl and the resultant digest bulked and filtered for analysis by ICP.
1:5 solid / water leach for soluble	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts
analytes			are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for
			analysis.

	MOIST	URE CONT	ENT TE	ST REPORT	
Client:	JC Geotechnics Pty Ltd		Job No:	S20152-2	
Address:	Shop 2-4, 143-147 Parramatta Ro 2137	ad, Concord, NSW	Report No:	S59054-MC	
Project:	Proposed New Development (GR	1102 1J)			
Test Proce	AS4133 1.1.1 RMS T120 Mc RMS T262 De	Rock moisture content tests - Determin isture content of road construction mate termination of moisture content of aggre	nation of the moisture con rials (Standard method) egates (Standard method		00/00/0000
Sampling: Preparation		ts apply to the sample as r with the test method	eceived	Date Sampled:	26/03/2020
Sample No.			Sample De	scription	Moisture Content %
S59054	BH3 (0.7m-0.8m)		Rock C	-	24.4
S59055	BH1 (5.5m-6m)		Rock C		11.0
S59056	BH2 (9m-9.12m)		Rock C		16.3
S59057	BH3 (6m-6.1m)		Rock C		10.4
Notes:	Accredited for compliance with ISO/IEt The results of the tests, calibrations a document are traceable to Australiar	nd/or measurements included in t		Authorised Signatory:	6/04/2020
\sim	shall not be reproduced, except in full.				
MAC	NATA Accredited Laborator	y Number: 14874		Chris Lloyd	Date: Macquarie Geotechnical U7/8 10 Bradford Street
GEC	ТЕСН				Alexandria NSW 2015

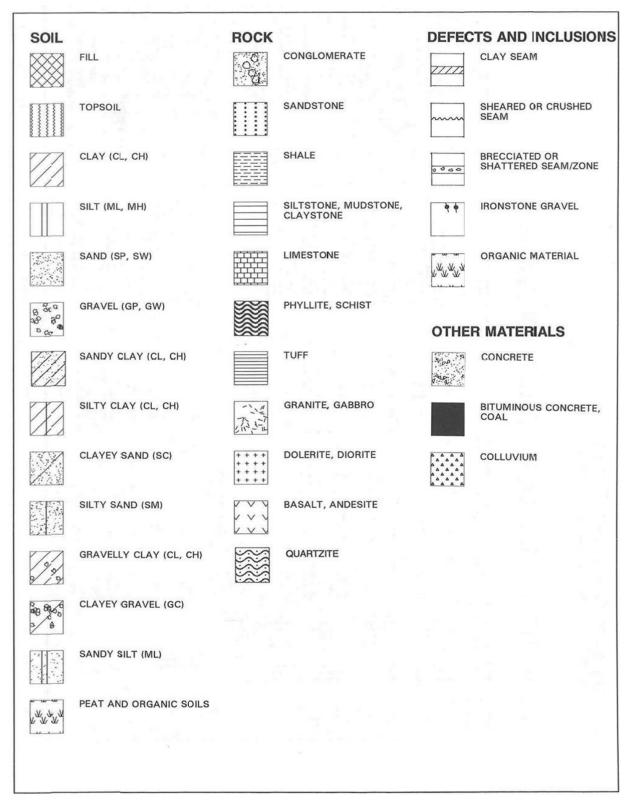
	SOIL CLASSIF	ICATION	REPORT								
Client	JC Geotechnics Pty Ltd	Source	BH3 (0.7m-0.8m)								
Address	Shop 2-4, 143-147 Parramatta Road, Concord, NSW 2137	/ Sample Description									
Project	Proposed New Development (GR1102 1J)	Report No	S59054-PI								
Job No	Job No S20152-2 Lab No S59054										
Sam	Test Procedure: AS1289 2.1.1 Soil moisture content tests (Oven drying method) Image: AS1289 3.1.1 Soil dassification tests - Determination of the liquid limit of a soil - Four point casagrande method Image: AS1289 3.1.2 Soil classification tests - Determination of the liquid limit if a soil - One point Casagrande method (subsidiary method) Image: AS1289 3.2.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method Image: AS1289 3.2.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method Image: AS1289 3.3.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method Image: AS1289 3.4.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method Image: AS1289 3.4.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method Image: AS1289 3.4.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method Image: AS1289 3.4.1 Soil classification tests - Determination of the linear shrinkage of a soil - Standard method Image: AS1289 3.4.1 Soil classification tests - Determination of the linear shrinkage of a soil - Standard method Image: AS1289 3.4.1 Soil classification tests - Determination of the linear shrinkage of a soil - Standard method Image: AS1289 3.4.1 Soil classification tests - Determination of the linear shrinkage of a soil - Standard method Image: AS1289 3.4.1 Soil classification tests - Determination of the linear shrinkage of a soi										
Prepar	ation: Prepared in accordance with the test method										
	Liquid Limit (%) 53 Plastic Limit (%) 22	Linear Shri Plast	inkage (%) 8.5 icity Index 31								
	Plasticity Chart for Classification	40 50 Liquid Limit %	Soils	80							
N	tes		Authorised Signatory:								
NATA	Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included document are traceable to Australian/national standards. This doc shall not be reproduced, except in full.	in this ument	and a signatory.	15/04/2020							
	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date:							
MACQU. GEOTE				Macquarie Geotechnical U7/8 10 Bradford Street Alexandria NSW 2015							

	F	POINT LO	AD STRE	NGTH	INDEX	K RI	EPOR	Т	
Client:	JC Geotechnics Pty Lto	ł		Moisture Content Condition:	As receive	ł			
Address:	Shop 2-4, 143-147 Par	ramatta Road, Con	cord, NSW 2137	Storage History:	Core boxes	6			
Project:	Proposed New Develo	oment (GR1102 1J)	Report No:	S58858-PL				
Job No:	S20152-1			Date Tested:	31/03/2020				
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:						Date	Sampled:		19/03/2020
Preparatio	Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
S58858	BH1 6.37 - 6.42m	Shale							
550050	BH1 0.37 - 0.42m	Silale	Axial	51.8	44.0	0.04	0.01	0.01	1
S58859	BH1 7.39 - 7.47m	Shale							
550055		Share	Axial	51.8	36.0	0.24	0.10	0.10	1
S58860	BH1 8.40 - 8.47m	Shale							
000000		Share	Axial	51.0	29.0	0.09	0.05	0.04	1
S58861	BH1 9.41 - 9.50m	Shale -							
000001			Axial	51.0	33.0	0.10	0.05	0.05	1
S58862	BH1 10.43 - 10.52m	- 10.52m Shale -							
			Axial	51.2	33.0	0.30	0.14	0.13	1
S58863	BH1 11.60 - 11.68m	Shale							
			Axial	51.5	29.0	0.19	0.10	0.09	1
S58864	BH1 12.60 - 12.68m	Shale							
			Axial	51.4	32.0	0.28	0.13	0.13	1
S58865	BH1 13.27 - 13.35m	Shale							
			Axial	51.7	36.0	0.82	0.35	0.34	1
S58866	BH1 14.46 - 14.60m	Shale							
			Axial	51.5	42.0	0.91	0.33	0.34	1
S58867	BH1 15.46 - 15.52m	Shale	Avial	F1 F	22.0	2 72	1.26	1.22	
Failura	Madaa 1 Fracture	through fobric of	Axial	51.5	33.0	2.72	1.26	1.22	1
railure	Modes 1 - Fracture		specimen oblique t	o beduing, not	IIIIuenceu	uy wear	c planes.		
	2 - Fracture	e along bedding.							
	3 - Fracture	e influenced by pre	-existing plane, mic	rofracture, vei	n or chemic	al altera	ation.		
	4 - Chip or	partial fracture.							
	Accredited for complia	nce with ISO/IEC 17025 -	Festing.		Authorise	d Signa	tory:		
NAT		urements included in this tandards. This document		and				31/03/2020	
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date
MACO	QUARIE								Macquarie Geotechr U7/8 10 Bradford
GEO	ТЕСН								Street Alexandria NSW

	F	POINT LC	AD STRE	ENGTH	INDEX	X RI	EPOR	Т	
Client:	JC Geotechnics Pty Lto	t		Moisture Content Condition:	As receive	d			
Address:	Shop 2-4, 143-147 Par	ramatta Road, Cor	ncord, NSW 2137	Storage History:	Core boxes	6			
Project:	Proposed New Develo	pment (GR1102 1J)	Report No:	S58868-PL				
Job No:	S20152-1			Date Tested:	26/03/2020)			
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	tion of point load strength	index				
Sampling:		Client				Date	Sampled:		19/03/2020
Preparatio	Prepared in	accordance with the	test method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
S58868									
338808	BH1 16.49 - 16.58m	Shale -	Axial	51.6	35.0	3.55	1.54	1.52	1
S58869	BH1 17.19 - 17.26m	Shale							
			Axial	51.6	35.0	3.52	1.53	1.50	1
S58870	BH3 6.24 - 6.33m	Shale							
			Axial	53.0	35.0	0.05	0.02	0.02	1
S58871	BH3 7.71 - 7.77m	Shale –							
555671			Axial	50.3	28.0	0.10	0.06	0.05	1
S58872	BH3 8.52 - 8.61m	Shale -							
			Axial	51.0	39.0	0.36	0.14	0.14	3
S58873	BH3 9.30 - 9.34m	Shale							
			Axial	51.2	37.0	0.33	0.14	0.14	1
S58874	BH3 10.39 - 10.44m	Shale							
			Axial	51.4	18.0	0.52	0.44	0.37	1
S58875	BH3 11.78 - 11.87m	Shale	A:	54 C	24.0		2.22	2.42	
			Axial	51.6	31.0	4.55	2.23	2.13	1
S58876	BH3 12.27 - 12.38m	Shale	Axial	51.7	33.0	1.59	0.73	0.71	1
				51.7	33.0	1.55	0.70	0.71	1
S58877	BH3 13.85 - 13.94m	Shale	Axial	51.8	40.0	2.39	0.91	0.92	1
Failure	Modes 1 - Fracture	through fabric of	specimen oblique t	o bedding, not	influenced	by weal	k planes.		
			opeointen opiique e		innaeneea	.,	, planeor		
		e along bedding.							
	3 - Fracture	e influenced by pre	-existing plane, mic	crofracture, vei	n or chemic	al altera	ation.		
	4 - Chip or	partial fracture.							
		ince with ISO/IEC 17025 -	-		Authorise	d Signa	tory:		
NAT		surements included in this tandards. This document	and					31/03/2020	
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd			Date
MACO	QUARIE TECH								Macquarie Geotechr U7/8 10 Bradford Stroot
010	1								Street Alexandria NSW

	F	POINT LC	DAD STRE	ENGTH	INDE	X RI	EPOR	Т		
Client:	JC Geotechnics Pty Lt	d		Moisture Content Condition:	As receive	d				
Address:	Shop 2-4, 143-147 Par	ramatta Road, Cor	ncord, NSW 2137	Storage History:	Core boxe	Core boxes				
Project:	Proposed New Develo	pment (GR1102 1J)	Report No:	S58878-PL					
Job No:	S20152-1		Date Tested:	26/03/2020	26/03/2020					
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determination	tion of point load strength	index					
Sampling:	Sampled by	Client				Date	Sampled:		19/03/2020	
Preparatio	DR: Prepared in	accordance with the	test method							
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode	
S58878	BH3 14.33 - 14.38m	Shale								
000070		Shale	Axial	51.7	43.0	3.48	1.23	1.26	1	
S58879	BH3 15.19 - 15.27m	Shale								
550075	51313.13 13.2711	Shale	Axial	51.7	34.0	3.02	1.35	1.32	1	
S58880	BH3 16.64 - 16.72m	Shale	Axial	51.7	40.0	2.40	0.91	0.92	1	
<u>Failure</u>	2 - Fracture 3 - Fracture	e along bedding.	specimen oblique t e-existing plane, mic							
			Testing		Authorise	d Signa	tory:			
Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. This document shall not be reproduced, except in full.					4		2		31/03/2020	
	NATA Accredite	er: 14874		Chris Lloyd				Date		
MACO	QUARIE	-							Macquarie Geotechr	
GEO	TECH								U7/8 10 Bradford Street Alexandria NSW	

	F	POINT LC	AD STRE	ENGTH	INDE	X RI	EPOR	Т	
Client:	JC Geotechnics Pty Lt	d		Moisture Content Condition:	As receive	d			
Address:	Shop 2-4, 143-147 Pa	rramatta Road, Cor	cord, NSW 2137	Storage History:	Core boxes	S			
Project: Proposed New Development (GR1102 1J)				Report No:	S59348-PL				
Job No:	S20173-2			Date Tested:	23/04/2020)			
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determina	tion of point load strength	index				
Sampling:		Client - results apply	to the sample as rece	ived		Date	Sampled:		31/03/2020
Preparatio	DR: Prepared in	accordance with the	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
\$59348	BH4 1.10-1.20m	Shale							
			Axial	50.5	32.0	0.19	0.09	0.09	1
S59349	BH4 1.75-1.85m	Shale							
			Axial	49.4	39.0	0.22	0.09	0.09	1
\$59350	BH4 2.40-2.50m	Shale							
			Axial	51.5	32.0	0.50	0.24	0.23	1
\$59351	BH4 2.90-3.0m	Shale	Axial	51.3	33.0	0.78	0.36	0.35	1
S59352	BH4 3.35-3.45m	Shale	Axial	51.4	31.0	0.26	0.13	0.12	1
\$59353	BH4 3.75-3.85m	Shale							
333333	DI14 3.73-3.05III	Shale	Axial	51.4	35.0	2.72	1.19	1.16	1
<u>Failure</u>	Modes 1 - Fractur	e through fabric of	specimen oblique t	o bedding, not	influenced	by wea	k planes.		
	2 - Fractur	e along bedding.							
				c					
	3 - Fractur	e influenced by pre	-existing plane, mic	crofracture, vei	n or chemic	al altera	ation.		
	4 - Chip or	partial fracture.							
	Accredited for complia	ance with ISO/IEC 17025 -	Testing.		Authorise	d Signa	tory:		
NAT		ts, calibrations and/or meas ble to Australian/national s ad, except in full.			C	2-2	2		23/04/2020
	NATA Accredite	ed Laboratory Numb	er: 14874		Chri	s Lloyd		•	Date
MACO	QUARIE								Macquarie Geotechr
GEO	ŢECH								U7/8 10 Bradford Street Alexandria NSW


	F	POINT LO	AD STRE	NGTH	INDE	X RI	EPOR	Т	
Client:	JC Geotechnics Pty Lto	t		Moisture Content Condition:	As receive	d			
Address:	Shop 2-4, 143-147 Par	ramatta Road, Con	cord, NSW 2137	Storage History:	Core boxes	8			
Project:	Proposed New Develo	pment (GR1102 1J)	Report No:	S59144-PL	-			
Job No:	S20173-1			Date Tested:	9/04/2020				
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling:		Client - results apply	to the sample as rece	ived		Date	Sampled:		Unknown
Preparatio	n: Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
\$59139	BH2 9.04 - 9.12m	Shale							
			Axial	51.2	35.0	0.86	0.38	0.37	1
\$59140	BH2 9.80 - 9.90m	Shale	Axial	51.4	38.0	0.60	0.24	0.24	1
								-	
\$59141	BH2 10.14 - 10.24m	Shale	Axial	51.5	37.0	0.82	0.34	0.34	1
S59142	BH2 10.90 - 10.97m	Shale	Axial	51.3	34.0	4.42	1.99	1.94	1
S59143	BH2 11.16 - 11.25m	Shale							
			Axial	51.2	40.0	3.77	1.45	1.46	1
S59144	BH2 11.83 - 11.91m	Shale							
			Axial	51.4	37.0	2.81	1.16	1.15	1
S59145	BH2 12.50 - 12.59m	Shale	Axial	51.5	42.0	3.33	1.21	1.24	1
			70001	51.5	42.0	5.55	1.21	1.24	1
S59146	BH2 12.82 - 12.89m	Shale	Axial	51.1	35.0	3.81	1.67	1.64	1
				51.1	33.0	5.01		1.01	-
\$59147	BH4 4.50 - 4.59m	Shale	Axial	51.6	31.0	3.27	1.61	1.53	1
S59148	BH4 4.75 - 4.81m	Shale	Axial	51.8	30.0	4.40	2.22	2.11	1
Failure	Modes 1 - Fracture	e through fabric of	specimen oblique t	o bedding, not	influenced	by weal	k planes.		
	2 - Fracture	e along bedding.							
				<i>.</i>					
	3 - Fracture	e influenced by pre	-existing plane, mic	rofracture, vei	n or chemic	al altera	ation.		
	4 - Chip or	partial fracture.							
		nce with ISO/IEC 17025 -			Authorise	d Signa	itory:		
NAT		s, calibrations and/or meas ble to Australian/national s d, except in full.							14/04/2020
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd		· · · · · · · · · · · · · · · · · · ·	Date
MACO GEO									Macquarie Geotechr U7/8 10 Bradford Street
	•								Alexandria NSW

	F	POINT LO	AD STRE	NGTH	INDE	X RI	EPOR	Т	
Client:	JC Geotechnics Pty Lt	d		Moisture Content Condition:	As recevie	d			
Address:	Shop 2-4, 143-147 Par	ramatta Road, Con	cord, NSW 2137	Storage History:	Core boxes	8			
Project:	Proposed New Develo	pment (GR1102 1J)	Report No:	S59154-PL	-			
Job No:	S20173-1			Date Tested:	9/04/2020				
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determina	tion of point load strength	index				
Sampling:		Client - results apply	-	ived		Date	Sampled:		Unknown
Preparatio	DR: Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Failure Mode
S59149	BH4 5.11 - 5.18m	Shale							
555115	5145.11 5.1011	Share	Axial	51.5	34.0	2.76	1.24	1.21	1
\$59150	BH4 5.90 - 5.99m	Shale							
			Axial	51.7	36.0	3.78	1.60	1.58	1
S59151	BH4 6.1 0- 6.20m	Shale							
			Axial	51.4	40.0	1.60	0.61	0.62	1
S59152	BH4 6.92 - 6.99m	Shale							
			Axial	51.7	36.0	3.75	1.58	1.56	1
S59153	BH4 7.22 - 7.28m	Shale					4.55		
			Axial	51.4	37.0	3.75	1.55	1.54	1
S59154	BH4 7.74 - 7.84m	Shale	Axial	51.6	40.0	3.50	1.33	1.35	1
			Aniai	51.0	40.0	5.50	1.55	1.55	1
Failure	Modes 1 - Fracture	e through fabric of	specimen oblique t	o bedding, not	influenced	by wea	k planes.		
	2 - Fracture	e along bedding.							
				_					
	3 - Fracture	e influenced by pre	-existing plane, mic	crofracture, vei	n or chemic	al altera	ation.		
	4 - Chip or	partial fracture.							
	Accredited for complia	ance with ISO/IEC 17025 -	Festing.		Authorise	d Signa	tory:		
NAT		ts, calibrations and/or meas ble to Australian/national s ad, except in full.			C	200	2		14/04/2020
	NATA Accredite	d Laboratory Numb	er: 14874		Chri	s Lloyd		·	Date
MACO GEO	QUARIE TECH								Macquarie Geotechr U7/8 10 Bradford Street Alexandria NSW

APPENDIX F

Explanatory Notes

GRAPHIC LOG SYMBOLS FOR SOILS AND ROCKS

The following information is intended to assist in the interpretation of terms and symbols used in geotechnical borehole logs, test pit logs and reports issued by or for the JC Geotechnics Pty Ltd. More detailed information relating to specific test methods is available in the relevant Australian Standards AS1726-2017.

Soil Descriptions

Description and Classification of Soils for Geotechnical Purposes: Refer to AS1726-2017 (Clause 6.1.6)

The following chart (adapted from AS1726-2017, Clause 6.1.6, Table A1) is based on the Unified Soil Classification System (USCS).

Table 1

Majo	r Divisions	Particle size mm	USCS Group Symbol	Typical Names	Field classification of sand and gravel			Labor	atory Cla	ssification	
	BOULDERS	200				% <	0.075 mm	Plasticity of fine fraction	$C_u = \frac{D_{60}}{D_{10}}$	$C_u = \frac{(D_{30})^2}{(D_{10})(D_{60})}$	NOTES
greater than 0.075 mm)	COBBLES	63	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	ractions	\leq 5% fines		>4	Between 1 and 3	(1) Identify fines by the method
greater tha	GRAVELS	coarse	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	63 mm for classification of fractions	\leq 5% fines	_	Fails to	comply with above	given for fine- grained soils.
ID SOILS fraction is	(more than half of coarse	20 medium	GM	Gravel-silt mixtures and gravel-sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	for classif	\geq 12% fines, fines are silty	Below 'A' line or PI<4	_	Fines behave as silt	(2) Borderline classification
COARSE GRAINED SOILS excluding oversize fraction is	fraction is larger than 2.36 mm)	6 fine	GC	Gravel-clay mixtures and gravel-sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	ng 63 mm	\geq 12% fines, fines are clayey	Above 'A' line and PI>7	_	Fines behave as clay	s occur when the percentage of fines
COARSF l excluding	SANDS	2.36	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	Use the gradation curve of material passing	$\leq 5\%$ fines		>6	Between 1 and 3	(fraction smaller than 0.075 mm
65% of soil	(more than half of coarse	coarse 0.6	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	Irve of mat	\leq 5% fines			comply with above	size) is greater than 5% and less than 12%.
(more than	fraction is smaller than 2.36 mm)	medium 0.2	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	radation cu	\geq 12% fines, fines are silty	Below 'A' line or PI<4	_		Borderline classifications require the use of SP-
ī)		fine 0.07 5	SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	Use the g	\geq 12% fines, fines are clayey	Above 'A' line and PI>7		_	SM, GW- GC.

Classification of fine-grained soils

	Major Divisions		Typical Names	Field classifie	cation of sar	nd and gravel	Laboratory classification	
		Symbol	Typical Maines	Dry Strength	Dilatancy	Toughness	% < 0.075 mm	
0.075 mm)		ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line	60
than	SILT and CLAY (low to medium plasticity, %) (Liquid Limit ≤50%)	CL CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line	50 50 50 50 50 50 50 50 50 50
SOILS fractions		OL	Organic silts and clays of low plasticity	Low to medium	Slow	Low	Below A line	
FINE GRAINED SOILS excluding oversize fractions is less		МН	Inorganic silts, mic- aceous or diato-maceous fine sands or silts, elastic silts	Low to medium	None to slow	Low to medium	Below A line	L L L L L L L L L L L L L L L L L L L
FINE G l excludin	SILT and CLAY (high plasticity) (Liquid Limit >50%)	СН	Inorganic clays of high plasticity, fat clays	High to very high	None	High	Above A line	
35% of soil		OH	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line	0 10 20 30 40 50 60 70 80 90 1 Liquid Limit W, %
(more than	HIGHLY ORGANIC SOILS	PT	Peat and other highly organic soils	-	-	-	-	

Ζ

Soil Colour: Is described in the moist condition using black, white, grey, red, brown, orange, yellow, green or blue. Borderline cases can be described as a combination of two colours, with the weaker followed by the stronger. Modifiers such as pale, dark or mottled, can be used as necessary. Where colour consists of a primary colour with secondary mottling, it should be described as follows: (Primary) mottled (Secondary). Refer to AS 1726-2017, Clause 6.1.5

Term	Description
Dry (D)	Cohesive soils; hard and friable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.
Moist	Soil feels cool, darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
Wet	Soil feels cool, darkened in colour. Cohesive soils usually weakened and free water forms on hands when handling. Granular soils tend to cohere and free water forms on hands when handling.

Consistency of Cohesive Soils: May be estimated using simple field tests, or described in terms of a strength scale. In the field, the undrained shear strength (s_u) can be assessed using a simple field tool appropriate for cohesive soils, in conjunction with the relevant calibration. Refer to AS 1726-2017, Table 11.

	Consistency -	Essentially	Cohesive	Soils		Soil Pa	article Sizes
Term	Field Guide	Symbol	SPT "N" Value	Undrained Shear Strength s _u (kPa)	Unconfined Compressive Strength q _u (kPa)	Term	Size Range
Very soft	Exudes between the fingers when squeezed in hand	VS	0-2	<12	<25	BOULDERS COBBLES	>200 mm 63-200 mm
Soft	Can be moulded by light finger pressure	S	2-4	12-25	25-50	Coarse GRAVEL Medium GRAVEL	20-63 mm 6-20 mm
Firm	Can be moulded by strong finger pressure	F	4-8	25-50	50-100	Fine GRAVEL Coarse SAND Medium SAND	2.36-6 mm 0.6-2.36 mm 0.2-0.6 mm
Stiff	Cannot be moulded by fingers	St	8-15	50-100	100-200	Fine SAND	0.075-0.2 mm
Very stiff	Can be indented by thumb nail	VSt	15-30	100-200	200-400	SILT CLAY	0.002-0.075 mm <0.002 mm
Hard	Can be indented with difficulty by thumb nail.	Н	>30	>200	>400	02411	
Friable (Fr)	Can be easily crumbled or broken into small pieces by hand	Fr	-	-	-		

Note: SPT - N to qu correlation from Terzaghi and Peck, 1967. (General guide only).

Consistency of Non-Cohesive Soils: Is described in terms of the density index, as defined in AS 1289.0-2014. This can be assessed using a field tool appropriate for non-cohesive soils, in conjunction with the relevant calibration. Refer to AS 1726-2017, Table 12

	Consistency - Essentially Non-Cohesive Soils							
Term	Symbol	SPT N Value	Field Guide	Density Index (%)				
Very loose	VL	0-4	Foot imprints readily	0-15				
Loose	L	4-10	Shovels Easily	15-35				
Medium dense	MD	10-30	Shoveling difficult	35-65				
Dense	D 30-50		Pick required	65-85				
Very dense	VD	>50	Picking difficult	85-100				

Standard Penetration Test (SPT): Refer to. AS 1289.6.3.1-2004 (R2016). Example report formats for SPT results are shown below:

Test Report	Penetration Resistance (N)	Explanation / Comment		
4, 7, 11 N=18		Full penetration; N is reported on engineering borehole log		
18, 27, 32 N=59		Full penetration; N is reported on engineering borehole log		
4, 18, 30/15 mm N is not reported		30 blows causes less than 100 mm penetration (3rd interval) – test discontinued		
30/80 mm N is not reported		30 blows causes less than 100 mm penetration (1st interval) - test discontinued		
rw N<1		Rod weight only causes full penetration		
hw	N<1	Hammer and rod weight only causes full penetration		

hb	N is not reported	Hammer bouncing for 5 consecutive blows with no measurable penetration – test
		discontinued

Rock Descriptions

Refer to AS 1726-2017 Clause 6.2.3 for the description and classification of rock material composition, including:

- (a) Rock name (Table 15, 16, 17, 18)
- (b) Grain size
- (c) Texture and fabric
- (d) Colour (describe as per soil)
- (e) Features, inclusion and minor components.
- (f) Moisture content
- (g) Durability

The condition of a rock material refers to its weathering characteristics, strength characteristics and rock mass properties. Refer to AS 1726-2017 (Clause 6.2.4 Tables 19, 20 and 21).

Weathering Condition (Degree of Weathering):

The degree of weathering is a continuum from fresh rock to soil. Boundaries between weathering grades may be abrupt or gradational.

Rock Material Weathering Classification						
Weathering Grade		Symbol		Definition		
Residual Soil (Note 1)		RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported		
Extremely Weathered Rock (Note 2)		Х	KW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible		
Highly Weathered Rock (Note 2)	Distinctly Weathered (Note 2)	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognizable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering		
Moderately Weathered Rock (Note 2)		MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognizable, but shows little or no change of strength from fresh rock.		
Slightly Weathered Rock		S	ŚW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock		
Fresh Rock		I	FR	Rock shows no sign of decomposition of individual minerals or colour changes		

Notes:

1. Minor variations within broader weathering grade zones will be noted on the engineering borehole logs.

2. Extremely weathered rock is described in terms of soil engineering properties.

3. Weathering may be pervasive throughout the rock mass, or may penetrate inwards from discontinuities to some extent.

4. Where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock the term 'Distinctly Weathered' may be used. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores. There is some change in rock strength.

Strength Condition (Intact Rock Strength):

Strength of Rock Material

(Based on Point Load Strength Index, corrected to 50 mm diameter $-I_{s(50)}$. Field guide used if no tests available. Refer to AS 4133.4.1-2007

(R2016). Point Load Index (MPa) Field Guide to Strength Term Sym $I_{s(50)}$ Extremely Low EL ≤0.03 Easily remoulded by hand to a material with soil properties. Material crumbles under firm blows with sharp end of pick; can be peeled with knife; Very Low VL >0.0 ≤0.1 too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.

Low	L	>0.1	≤0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	М	>0.3	≤1.0	Readily scored with a knife; broken by hand with difficult a piece of core 150 mm long by 50 mm diameter can be y.
High	Н	>1	≤3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High	VH	>3	≤10	pick after more than one blow; rock rings under hammer.
Extremely High	EH	>10		Specimen requires many blow rock ring with geological pick to break through intact material; under hammer

Notes:

1. These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weaker due to the effect of rock defects.

2. Anisotropy of rock material samples may affect the field assessment of strength.

Anisotropic Fabric		Roughness (e.g. Planar, Smooth is abbreviated Pl / Sm) Class					Other		
BED	Bedding			Rough or irregular (Ro)	Ι		Cly	Clay	
FOL	Foliation	Stepped (Stp)	Smooth (Sm)	Π		Fe	Iron	
LIN	Mineral lineation			Slickensided (Sl)	III		Co	Coal	
Defect Type				Rough (Ro) IV			Carb	Carbonaceous	
LP	Lamination Parting	Undulatin	ng (Un)	Smooth (Sm)	V			Soil Infill Zone	
BP	Bedding Parting			Slickensided (Sl)	VI		Qz	Quartz	
FP	Cleavage / Foliation Parting			Rough (Ro)	VII		CA	Calcite	
J, Js	Joint, Joints	Planar (P	l)	Smooth (Sm)	VIII		Chl	Chlorite	
SZ	Sheared Zone			Slickensided (Sl)	IX		Ру	Pyrite	
CZ	Crushed Zone	Aperture		Infilling			Int	Intersecting	
ΒZ	Broken Zone	Closed	CD	No visible coating or infill	Clean	Cn	Inc	Incipient	
HFZ	Highly Fractured Zone	Open	OP	Surfaces discoloured by mineral/s	Stain	St	DI	Drilling Induced	
AZ	Alteration Zone	Filled	FL	Visible mineral or soil infill <1mm	Veneer	Vr	Н	Horizontal	
VN	Vein	Tight TI		Visible mineral or soil infill >1mm	Coating	Ct	V	Vertical	

Discontinuity Description: Refer to AS 1726-2017, Table 22.

Note: Describe 'Zones' and 'Coatings' in terms of composition and thickness (mm).

Discontinuity Spacing: On the geotechnical borehole log, a graphical representation of defect spacing vs depth is shown. This representation takes into account all the natural rock defects occurring within a given depth interval, excluding breaks induced by the drilling / handling of core. Refer to AS 1726-2017, BS5930-2015.

D	efect Spacing		Bedding (Sedimentary Re	Thickness ock	Defect Spacing in 3D			
Spacing/Width (mm)	Descriptor	Symbol	Descriptor	Spacing/Width (mm)	Term	Description		
			Thinly Laminated	< 6	Blocky	Equidimensional		
<20	Extremely Close	EC	Thickly Laminated	6-20	Tabular	Thickness much less than length or width		
20-60	Very Close	VC	Very Thinly Bedded	20-60	Columnar	Height much greater than cross section		
60 - 200	Close	С	Thinly Bedded	60 - 200		•		
200 - 600	Medium	М	Medium Bedded	200 - 600	Defect Persistence			
600 - 2000	Wide	W	Thickly Bedded	600 - 2000	(areal extent)			
2000 - 6000	Very Wide	VW	Very Thickly Bedded	> 2000				
>6000	Extremely Wide	EW			Trace length of defect given in metres			

Symbols

The list below provides an explanation of terms and symbols used on the geotechnical borehole, test pit and penetrometer logs.

Test Results						Test Symbols				
PI	Plasticity Index c'		Effective Cohesion		DCP		Dynamic Cone Penetrometer			
LL	Liquid Limit c _u		Undrained Cohesion		S	SPT Standard Penetration Tes		dard Penetration Test		
LI	LI Liquidity Index c' _R		Residual Cohesion		CF	PTu	Cone	one Penetrometer (Piezocone) Test		
DD	DD Dry Density ϕ'		Effective Angle of Internal Friction		PANDA		Variable Energy DCP			
WD	Wet Density	Φ_{u}	Undrained Angle of Internal Friction		PP I		Pock	et Penetrometer Test		
LS Linear Shrinkage ϕ'_R		Residual Angle of Internal Friction					sturbed Sample 50 mm (nominal leter)			
MC	Moisture Content c _v		Coefficient of Consolidation					Jndisturbed Sample 100mm nominal diameter)		
OC	C Organic Content m _v		Coefficient of Volume Compressibility		UCS		Uniaxial Compressive Strength			
WPI	Weighted Plasticity Index	Cae	Coefficient of Secondary Compression		Р	Pm Pro		suremeter		
Test Results						Test Symbols				
WLS	Weighted Linear Shrinkage e		Voids Ratio			FSV		Field Shear Vane		
DoS	Degree of Saturation	φ′ _{cv}	Constant Volume Friction Angle			DST		Direct Shear Test		
APD	APD Apparent Particle Density q_t / q_c		Piezocone Tip Resistance (corrected / uncorrected)			PR		Penetration Rate		
s _u	Undrained Shear Strength	h q _d	PANDA Cone Resistance			А		Point Load Test (axial)		
q_u Unconfined Compressive Strength $I_{s(50)}$		Point Load Strength Index			D		Point Load Test (diametral)			
R	R Total Core Recovery RQD		Rock Quality Designation			L		Point Load Test (irregular lump)		

Groundwater level on the date shown

Water Inflow

Water Outflow

 \triangleleft

